{"title":"编码线粒体核糖体的多个基因在精神分裂症患者的大脑和血液样本中下调。","authors":"Gideon Bartal, Assif Yitzhaky, Aviv Segev, Libi Hertzberg","doi":"10.1080/15622975.2023.2211653","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Schizophrenia is a chronic, debilitating mental disorder whose pathophysiology is complex and not fully understood. Numerous studies suggest mitochondrial dysfunction may contribute to the development of schizophrenia. While mitochondrial ribosomes (mitoribosomes) are essential for proper mitochondrial functioning, their gene expression levels have not been studied yet in schizophrenia.</p><p><strong>Methods: </strong>We performed a systematic meta-analysis of the expression of 81 mitoribosomes subunits encoding genes, integrating ten brain samples datasets of patients with schizophrenia compared to healthy controls (overall 422 samples, 211 schizophrenia, and 211 controls). We also performed a meta-analysis of their expression in blood, integrating two blood sample datasets (overall 90 samples, 53 schizophrenia, and 37 controls).</p><p><strong>Results: </strong>Multiple mitoribosomes subunits were significantly downregulated in brain samples (18 genes) and in blood samples (11 genes) of individuals with schizophrenia, where two showed significant downregulation in both brain and blood, MRPL4 and MRPS7.</p><p><strong>Conclusions: </strong>Our results support the accumulating evidence of impaired mitochondrial activity in schizophrenia. While further research is needed to validate mitoribosomes' role as biomarkers, this direction has the potential to promote patients' stratification and personalised treatment for schizophrenia.</p>","PeriodicalId":49358,"journal":{"name":"World Journal of Biological Psychiatry","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple genes encoding mitochondrial ribosomes are downregulated in brain and blood samples of individuals with schizophrenia.\",\"authors\":\"Gideon Bartal, Assif Yitzhaky, Aviv Segev, Libi Hertzberg\",\"doi\":\"10.1080/15622975.2023.2211653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Schizophrenia is a chronic, debilitating mental disorder whose pathophysiology is complex and not fully understood. Numerous studies suggest mitochondrial dysfunction may contribute to the development of schizophrenia. While mitochondrial ribosomes (mitoribosomes) are essential for proper mitochondrial functioning, their gene expression levels have not been studied yet in schizophrenia.</p><p><strong>Methods: </strong>We performed a systematic meta-analysis of the expression of 81 mitoribosomes subunits encoding genes, integrating ten brain samples datasets of patients with schizophrenia compared to healthy controls (overall 422 samples, 211 schizophrenia, and 211 controls). We also performed a meta-analysis of their expression in blood, integrating two blood sample datasets (overall 90 samples, 53 schizophrenia, and 37 controls).</p><p><strong>Results: </strong>Multiple mitoribosomes subunits were significantly downregulated in brain samples (18 genes) and in blood samples (11 genes) of individuals with schizophrenia, where two showed significant downregulation in both brain and blood, MRPL4 and MRPS7.</p><p><strong>Conclusions: </strong>Our results support the accumulating evidence of impaired mitochondrial activity in schizophrenia. While further research is needed to validate mitoribosomes' role as biomarkers, this direction has the potential to promote patients' stratification and personalised treatment for schizophrenia.</p>\",\"PeriodicalId\":49358,\"journal\":{\"name\":\"World Journal of Biological Psychiatry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15622975.2023.2211653\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15622975.2023.2211653","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Multiple genes encoding mitochondrial ribosomes are downregulated in brain and blood samples of individuals with schizophrenia.
Objectives: Schizophrenia is a chronic, debilitating mental disorder whose pathophysiology is complex and not fully understood. Numerous studies suggest mitochondrial dysfunction may contribute to the development of schizophrenia. While mitochondrial ribosomes (mitoribosomes) are essential for proper mitochondrial functioning, their gene expression levels have not been studied yet in schizophrenia.
Methods: We performed a systematic meta-analysis of the expression of 81 mitoribosomes subunits encoding genes, integrating ten brain samples datasets of patients with schizophrenia compared to healthy controls (overall 422 samples, 211 schizophrenia, and 211 controls). We also performed a meta-analysis of their expression in blood, integrating two blood sample datasets (overall 90 samples, 53 schizophrenia, and 37 controls).
Results: Multiple mitoribosomes subunits were significantly downregulated in brain samples (18 genes) and in blood samples (11 genes) of individuals with schizophrenia, where two showed significant downregulation in both brain and blood, MRPL4 and MRPS7.
Conclusions: Our results support the accumulating evidence of impaired mitochondrial activity in schizophrenia. While further research is needed to validate mitoribosomes' role as biomarkers, this direction has the potential to promote patients' stratification and personalised treatment for schizophrenia.
期刊介绍:
The aim of The World Journal of Biological Psychiatry is to increase the worldwide communication of knowledge in clinical and basic research on biological psychiatry. Its target audience is thus clinical psychiatrists, educators, scientists and students interested in biological psychiatry. The composition of The World Journal of Biological Psychiatry , with its diverse categories that allow communication of a great variety of information, ensures that it is of interest to a wide range of readers.
The World Journal of Biological Psychiatry is a major clinically oriented journal on biological psychiatry. The opportunity to educate (through critical review papers, treatment guidelines and consensus reports), publish original work and observations (original papers and brief reports) and to express personal opinions (Letters to the Editor) makes The World Journal of Biological Psychiatry an extremely important medium in the field of biological psychiatry all over the world.