蛋白质-蛋白质相互作用(PPI)网络分析揭示了水稻根系发育的重要枢纽蛋白和子网络模块。

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal, genetic engineering & biotechnology Pub Date : 2023-05-29 DOI:10.1186/s43141-023-00515-8
Samadhi S Wimalagunasekara, Janith W J K Weeraman, Shamala Tirimanne, Pasan C Fernando
{"title":"蛋白质-蛋白质相互作用(PPI)网络分析揭示了水稻根系发育的重要枢纽蛋白和子网络模块。","authors":"Samadhi S Wimalagunasekara,&nbsp;Janith W J K Weeraman,&nbsp;Shamala Tirimanne,&nbsp;Pasan C Fernando","doi":"10.1186/s43141-023-00515-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The root system is vital to plant growth and survival. Therefore, genetic improvement of the root system is beneficial for developing stress-tolerant and improved plant varieties. This requires the identification of proteins that significantly contribute to root development. Analyzing protein-protein interaction (PPI) networks is vastly beneficial in studying developmental phenotypes, such as root development, because a phenotype is an outcome of several interacting proteins. PPI networks can be analyzed to identify modules and get a global understanding of important proteins governing the phenotypes. PPI network analysis for root development in rice has not been performed before and has the potential to yield new findings to improve stress tolerance.</p><p><strong>Results: </strong>Here, the network module for root development was extracted from the global Oryza sativa PPI network retrieved from the STRING database. Novel protein candidates were predicted, and hub proteins and sub-modules were identified from the extracted module. The validation of the predictions yielded 75 novel candidate proteins, 6 sub-modules, 20 intramodular hubs, and 2 intermodular hubs.</p><p><strong>Conclusions: </strong>These results show how the PPI network module is organized for root development and can be used for future wet-lab studies for producing improved rice varieties.</p>","PeriodicalId":74026,"journal":{"name":"Journal, genetic engineering & biotechnology","volume":"21 1","pages":"69"},"PeriodicalIF":3.6000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225403/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein-protein interaction (PPI) network analysis reveals important hub proteins and sub-network modules for root development in rice (Oryza sativa).\",\"authors\":\"Samadhi S Wimalagunasekara,&nbsp;Janith W J K Weeraman,&nbsp;Shamala Tirimanne,&nbsp;Pasan C Fernando\",\"doi\":\"10.1186/s43141-023-00515-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The root system is vital to plant growth and survival. Therefore, genetic improvement of the root system is beneficial for developing stress-tolerant and improved plant varieties. This requires the identification of proteins that significantly contribute to root development. Analyzing protein-protein interaction (PPI) networks is vastly beneficial in studying developmental phenotypes, such as root development, because a phenotype is an outcome of several interacting proteins. PPI networks can be analyzed to identify modules and get a global understanding of important proteins governing the phenotypes. PPI network analysis for root development in rice has not been performed before and has the potential to yield new findings to improve stress tolerance.</p><p><strong>Results: </strong>Here, the network module for root development was extracted from the global Oryza sativa PPI network retrieved from the STRING database. Novel protein candidates were predicted, and hub proteins and sub-modules were identified from the extracted module. The validation of the predictions yielded 75 novel candidate proteins, 6 sub-modules, 20 intramodular hubs, and 2 intermodular hubs.</p><p><strong>Conclusions: </strong>These results show how the PPI network module is organized for root development and can be used for future wet-lab studies for producing improved rice varieties.</p>\",\"PeriodicalId\":74026,\"journal\":{\"name\":\"Journal, genetic engineering & biotechnology\",\"volume\":\"21 1\",\"pages\":\"69\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225403/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal, genetic engineering & biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43141-023-00515-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal, genetic engineering & biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43141-023-00515-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:根系对植物的生长和生存至关重要。因此,对根系进行遗传改良有利于培育耐胁迫和改良的植物品种。这需要鉴定对根系发育有重要贡献的蛋白质。分析蛋白质-蛋白质相互作用(PPI)网络对研究发育表型(如根发育)非常有益,因为表型是几种蛋白质相互作用的结果。可以分析PPI网络来识别模块,并获得控制表型的重要蛋白质的全局理解。水稻根系发育的PPI网络分析以前从未进行过,有可能在提高胁迫耐受性方面产生新的发现。结果:本文从STRING数据库中检索到的全球Oryza sativa PPI网络中提取了根系发育网络模块。预测新的候选蛋白,并从提取的模块中鉴定出枢纽蛋白和子模块。预测的验证产生了75个新的候选蛋白,6个子模块,20个模内枢纽和2个模间枢纽。结论:这些结果显示了PPI网络模块是如何组织根系发育的,并可用于未来生产改良水稻品种的湿室研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protein-protein interaction (PPI) network analysis reveals important hub proteins and sub-network modules for root development in rice (Oryza sativa).

Background: The root system is vital to plant growth and survival. Therefore, genetic improvement of the root system is beneficial for developing stress-tolerant and improved plant varieties. This requires the identification of proteins that significantly contribute to root development. Analyzing protein-protein interaction (PPI) networks is vastly beneficial in studying developmental phenotypes, such as root development, because a phenotype is an outcome of several interacting proteins. PPI networks can be analyzed to identify modules and get a global understanding of important proteins governing the phenotypes. PPI network analysis for root development in rice has not been performed before and has the potential to yield new findings to improve stress tolerance.

Results: Here, the network module for root development was extracted from the global Oryza sativa PPI network retrieved from the STRING database. Novel protein candidates were predicted, and hub proteins and sub-modules were identified from the extracted module. The validation of the predictions yielded 75 novel candidate proteins, 6 sub-modules, 20 intramodular hubs, and 2 intermodular hubs.

Conclusions: These results show how the PPI network module is organized for root development and can be used for future wet-lab studies for producing improved rice varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physiochemical analyses and molecular characterization of heavy metal-resistant bacteria from Ilesha gold mining sites in Nigeria. Whole genome sequence and comparative genomics analysis of multidrug-resistant Staphylococcus xylosus NM36 isolated from a cow with mastitis in Basrah city. Immunoinformatics-aided rational design of multiepitope-based peptide vaccine (MEBV) targeting human parainfluenza virus 3 (HPIV-3) stable proteins. Isolation of plant growth-promoting rhizobacteria from the agricultural fields of Tattiannaram, Telangana. Short tandem repeat (STR) variation from 6 cities in Iraq based on 15 loci.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1