{"title":"极性c-二gmp的合成与降解。","authors":"Vanessa Kreiling, Kai M Thormann","doi":"10.1093/femsml/uqad014","DOIUrl":null,"url":null,"abstract":"<p><p>The bacterial cell pole has long been recognized as a defined compartment for enzymatic activities that are important or even vital for the cell. Polarity of diguanylate cyclases and phosphodiesterases, enzymes that synthesize and degrade the second messenger c-di-GMP, has now been demonstrated for several bacterial systems. Here we review these polar regulatory systems and show how the asymmetry of c-di-GMP production and turnover in concert with different modes of activation and deactivation creates heterogeneity in cellular c-di-GMP levels. We highlight how this heterogeneity generates a diverse set of phenotypic identities or states and how this may benefit the cell population, and we discuss reasons why the polarity of c-di-GMP signaling is probably widespread among bacteria.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"4 ","pages":"uqad014"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212136/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polarity of c-di-GMP synthesis and degradation.\",\"authors\":\"Vanessa Kreiling, Kai M Thormann\",\"doi\":\"10.1093/femsml/uqad014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The bacterial cell pole has long been recognized as a defined compartment for enzymatic activities that are important or even vital for the cell. Polarity of diguanylate cyclases and phosphodiesterases, enzymes that synthesize and degrade the second messenger c-di-GMP, has now been demonstrated for several bacterial systems. Here we review these polar regulatory systems and show how the asymmetry of c-di-GMP production and turnover in concert with different modes of activation and deactivation creates heterogeneity in cellular c-di-GMP levels. We highlight how this heterogeneity generates a diverse set of phenotypic identities or states and how this may benefit the cell population, and we discuss reasons why the polarity of c-di-GMP signaling is probably widespread among bacteria.</p>\",\"PeriodicalId\":74189,\"journal\":{\"name\":\"microLife\",\"volume\":\"4 \",\"pages\":\"uqad014\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212136/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microLife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/femsml/uqad014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqad014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The bacterial cell pole has long been recognized as a defined compartment for enzymatic activities that are important or even vital for the cell. Polarity of diguanylate cyclases and phosphodiesterases, enzymes that synthesize and degrade the second messenger c-di-GMP, has now been demonstrated for several bacterial systems. Here we review these polar regulatory systems and show how the asymmetry of c-di-GMP production and turnover in concert with different modes of activation and deactivation creates heterogeneity in cellular c-di-GMP levels. We highlight how this heterogeneity generates a diverse set of phenotypic identities or states and how this may benefit the cell population, and we discuss reasons why the polarity of c-di-GMP signaling is probably widespread among bacteria.