{"title":"在未分化的PC12细胞中,转铁蛋白、胰岛素和黄体酮调节辅酶Q和胆固醇的细胞内浓度,它们是甲羟戊酸途径的产物。","authors":"Akari Nakamura, Yukina Aida, Mizuho Okamoto, Ayaka Maeda, Ayaka Nagao, Kanae Kitatani, Susumu Takekoshi, Akio Fujisawa, Yorihiro Yamamoto, Misato Kashiba","doi":"10.3164/jcbn.22-115","DOIUrl":null,"url":null,"abstract":"<p><p>Coenzyme Q (CoQ) is important not only as an essential lipid for the mitochondrial electron transport system, but also as an antioxidant. CoQ levels decrease during aging and in various diseases. Orally administered CoQ is not readily taken up in the brain, so it is necessary to develop a method to increase the amount of CoQ in neurons. CoQ is synthesized via mevalonate pathway, like cholesterol. Transferrin, insulin, and progesterone are factors used in the culture of neurons. In this study, we determined the effect of these reagents on cellular CoQ and cholesterol levels. The administration of transferrin, insulin, and progesterone increased cellular CoQ levels in undifferentiated PC12 cells. When serum was removed and only insulin was administered, intracellular CoQ levels increased. This increase was even more pronounced with concurrent administration of transferrin, insulin, and progesterone. Cholesterol level decreased by the administration of transferrin, insulin, and progesterone. Progesterone treatment lowered intracellular cholesterol levels in a concentration-dependent manner. Our findings suggest that transferrin, insulin, and progesterone may be useful in regulating CoQ levels and cholesterol levels, which are products of the mevalonate pathway.</p>","PeriodicalId":15429,"journal":{"name":"Journal of Clinical Biochemistry and Nutrition","volume":"72 3","pages":"199-206"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/99/36/jcbn22-115.PMC10209592.pdf","citationCount":"0","resultStr":"{\"title\":\"Transferrin, insulin, and progesterone modulate intracellular concentrations of coenzyme Q and cholesterol, products of the mevalonate pathway, in undifferentiated PC12 cells.\",\"authors\":\"Akari Nakamura, Yukina Aida, Mizuho Okamoto, Ayaka Maeda, Ayaka Nagao, Kanae Kitatani, Susumu Takekoshi, Akio Fujisawa, Yorihiro Yamamoto, Misato Kashiba\",\"doi\":\"10.3164/jcbn.22-115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coenzyme Q (CoQ) is important not only as an essential lipid for the mitochondrial electron transport system, but also as an antioxidant. CoQ levels decrease during aging and in various diseases. Orally administered CoQ is not readily taken up in the brain, so it is necessary to develop a method to increase the amount of CoQ in neurons. CoQ is synthesized via mevalonate pathway, like cholesterol. Transferrin, insulin, and progesterone are factors used in the culture of neurons. In this study, we determined the effect of these reagents on cellular CoQ and cholesterol levels. The administration of transferrin, insulin, and progesterone increased cellular CoQ levels in undifferentiated PC12 cells. When serum was removed and only insulin was administered, intracellular CoQ levels increased. This increase was even more pronounced with concurrent administration of transferrin, insulin, and progesterone. Cholesterol level decreased by the administration of transferrin, insulin, and progesterone. Progesterone treatment lowered intracellular cholesterol levels in a concentration-dependent manner. Our findings suggest that transferrin, insulin, and progesterone may be useful in regulating CoQ levels and cholesterol levels, which are products of the mevalonate pathway.</p>\",\"PeriodicalId\":15429,\"journal\":{\"name\":\"Journal of Clinical Biochemistry and Nutrition\",\"volume\":\"72 3\",\"pages\":\"199-206\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/99/36/jcbn22-115.PMC10209592.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Biochemistry and Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3164/jcbn.22-115\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Biochemistry and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3164/jcbn.22-115","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Transferrin, insulin, and progesterone modulate intracellular concentrations of coenzyme Q and cholesterol, products of the mevalonate pathway, in undifferentiated PC12 cells.
Coenzyme Q (CoQ) is important not only as an essential lipid for the mitochondrial electron transport system, but also as an antioxidant. CoQ levels decrease during aging and in various diseases. Orally administered CoQ is not readily taken up in the brain, so it is necessary to develop a method to increase the amount of CoQ in neurons. CoQ is synthesized via mevalonate pathway, like cholesterol. Transferrin, insulin, and progesterone are factors used in the culture of neurons. In this study, we determined the effect of these reagents on cellular CoQ and cholesterol levels. The administration of transferrin, insulin, and progesterone increased cellular CoQ levels in undifferentiated PC12 cells. When serum was removed and only insulin was administered, intracellular CoQ levels increased. This increase was even more pronounced with concurrent administration of transferrin, insulin, and progesterone. Cholesterol level decreased by the administration of transferrin, insulin, and progesterone. Progesterone treatment lowered intracellular cholesterol levels in a concentration-dependent manner. Our findings suggest that transferrin, insulin, and progesterone may be useful in regulating CoQ levels and cholesterol levels, which are products of the mevalonate pathway.
期刊介绍:
Journal of Clinical Biochemistry and Nutrition (JCBN) is
an international, interdisciplinary publication encompassing
chemical, biochemical, physiological, pathological, toxicological and medical approaches to research on lipid peroxidation, free radicals, oxidative stress and nutrition. The
Journal welcomes original contributions dealing with all
aspects of clinical biochemistry and clinical nutrition
including both in vitro and in vivo studies.