{"title":"细菌效应物 SidN/Lpg1083 通过靶向 Lamin-B2 促进细胞死亡。","authors":"Jiajia Gao, Wenwen Xu, Feng Tang, Minrui Xu, Qin Zhou, Xingyuan Yang, Nannan Zhang, Jinming Ma, Qi Yang, Xiaofang Chen, Ximing Qin, Honghua Ge","doi":"10.1093/jmcb/mjad036","DOIUrl":null,"url":null,"abstract":"<p><p>To facilitate survival, replication, and dissemination, the intracellular pathogen Legionella pneumophila relies on its unique type IVB secretion system (T4SS) to deliver over 330 effectors to hijack host cell pathways in a spatiotemporal manner. The effectors and their host targets are largely unexplored due to their low sequence identity to the known proteins and functional redundancy. The T4SS effector SidN (Lpg1083) is secreted into host cells during the late infection period. However, to the best of our knowledge, the molecular characterization of SidN has not been studied. Herein, we identified SidN as a nuclear envelope-localized effector. Its structure adopts a novel fold, and the N-terminal domain is crucial for its specific subcellular localization. Furthermore, we found that SidN is transported by eukaryotic karyopherin Importin-13 into the nucleus, where it attaches to the N-terminal region of Lamin-B2 to interfere with the integrity of the nuclear envelope, causing nuclear membrane disruption and eventually cell death. Our work provides new insights into the structure and function of an L. pneumophila effector protein, and suggests a potential strategy utilized by the pathogen to promote host cell death and then escape from the host for secondary infection.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729856/pdf/","citationCount":"0","resultStr":"{\"title\":\"The bacterial effector SidN/Lpg1083 promotes cell death by targeting Lamin-B2.\",\"authors\":\"Jiajia Gao, Wenwen Xu, Feng Tang, Minrui Xu, Qin Zhou, Xingyuan Yang, Nannan Zhang, Jinming Ma, Qi Yang, Xiaofang Chen, Ximing Qin, Honghua Ge\",\"doi\":\"10.1093/jmcb/mjad036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To facilitate survival, replication, and dissemination, the intracellular pathogen Legionella pneumophila relies on its unique type IVB secretion system (T4SS) to deliver over 330 effectors to hijack host cell pathways in a spatiotemporal manner. The effectors and their host targets are largely unexplored due to their low sequence identity to the known proteins and functional redundancy. The T4SS effector SidN (Lpg1083) is secreted into host cells during the late infection period. However, to the best of our knowledge, the molecular characterization of SidN has not been studied. Herein, we identified SidN as a nuclear envelope-localized effector. Its structure adopts a novel fold, and the N-terminal domain is crucial for its specific subcellular localization. Furthermore, we found that SidN is transported by eukaryotic karyopherin Importin-13 into the nucleus, where it attaches to the N-terminal region of Lamin-B2 to interfere with the integrity of the nuclear envelope, causing nuclear membrane disruption and eventually cell death. Our work provides new insights into the structure and function of an L. pneumophila effector protein, and suggests a potential strategy utilized by the pathogen to promote host cell death and then escape from the host for secondary infection.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729856/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjad036\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjad036","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The bacterial effector SidN/Lpg1083 promotes cell death by targeting Lamin-B2.
To facilitate survival, replication, and dissemination, the intracellular pathogen Legionella pneumophila relies on its unique type IVB secretion system (T4SS) to deliver over 330 effectors to hijack host cell pathways in a spatiotemporal manner. The effectors and their host targets are largely unexplored due to their low sequence identity to the known proteins and functional redundancy. The T4SS effector SidN (Lpg1083) is secreted into host cells during the late infection period. However, to the best of our knowledge, the molecular characterization of SidN has not been studied. Herein, we identified SidN as a nuclear envelope-localized effector. Its structure adopts a novel fold, and the N-terminal domain is crucial for its specific subcellular localization. Furthermore, we found that SidN is transported by eukaryotic karyopherin Importin-13 into the nucleus, where it attaches to the N-terminal region of Lamin-B2 to interfere with the integrity of the nuclear envelope, causing nuclear membrane disruption and eventually cell death. Our work provides new insights into the structure and function of an L. pneumophila effector protein, and suggests a potential strategy utilized by the pathogen to promote host cell death and then escape from the host for secondary infection.
期刊介绍:
The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome.
JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.