Andreas Koller, Susanne Maria Brunner, Julia Preishuber-Pflügl, Christian Runge, Anja-Maria Ladek, Herbert Anton Reitsamer, Andrea Trost
{"title":"半胱氨酸白三烯受体1是ARPE-19视网膜色素上皮细胞系内溶酶体系统的有效调节剂。","authors":"Andreas Koller, Susanne Maria Brunner, Julia Preishuber-Pflügl, Christian Runge, Anja-Maria Ladek, Herbert Anton Reitsamer, Andrea Trost","doi":"10.1111/tra.12881","DOIUrl":null,"url":null,"abstract":"<p><p>The endosomal-lysosomal system is central for cell homeostasis and comprises the functions and dynamics of particular organelles including endosomes, lysosomes and autophagosomes. In previous studies, we found that the cysteinyl leukotriene receptor 1 (CysLTR1) regulates autophagy in the retinal pigment epithelial cell line ARPE-19 under basal cellular conditions. However, the underlying mechanism by which CysLTR1 regulates autophagy is unknown. Thus, in the present study, the effects of CysLTR1 inhibition on the endosomal-lysosomal system are analyzed in detail to identify the role of CysLTR1 in cell homeostasis and autophagy regulation. CysLTR1 inhibition in ARPE-19 cells by Zafirlukast, a CysLTR1 antagonist, depleted the lysosomal pool. Furthermore, CysLTR1 antagonization reduced endocytic capacity and internalization of epidermal growth factor and decreased levels of the transferrin receptor, CD71. Serum starvation abolished the effect of Zafirlukast on the autophagic flux, which identifies the endocytic regulation of serum components by CysLTR1 as an important autophagy-modulating mechanism. The role of CysLTR1 in inflammation and cell stress has been exceedingly studied, but its involvement in the endosomal-lysosomal pathway is largely unknown. This current study provides new insights into basal activity of CysLTR1 on cellular endocytosis and the subsequent impact on downstream processes like autophagy.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cysteinyl leukotriene receptor 1 is a potent regulator of the endosomal-lysosomal system in the ARPE-19 retinal pigment epithelial cell line.\",\"authors\":\"Andreas Koller, Susanne Maria Brunner, Julia Preishuber-Pflügl, Christian Runge, Anja-Maria Ladek, Herbert Anton Reitsamer, Andrea Trost\",\"doi\":\"10.1111/tra.12881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The endosomal-lysosomal system is central for cell homeostasis and comprises the functions and dynamics of particular organelles including endosomes, lysosomes and autophagosomes. In previous studies, we found that the cysteinyl leukotriene receptor 1 (CysLTR1) regulates autophagy in the retinal pigment epithelial cell line ARPE-19 under basal cellular conditions. However, the underlying mechanism by which CysLTR1 regulates autophagy is unknown. Thus, in the present study, the effects of CysLTR1 inhibition on the endosomal-lysosomal system are analyzed in detail to identify the role of CysLTR1 in cell homeostasis and autophagy regulation. CysLTR1 inhibition in ARPE-19 cells by Zafirlukast, a CysLTR1 antagonist, depleted the lysosomal pool. Furthermore, CysLTR1 antagonization reduced endocytic capacity and internalization of epidermal growth factor and decreased levels of the transferrin receptor, CD71. Serum starvation abolished the effect of Zafirlukast on the autophagic flux, which identifies the endocytic regulation of serum components by CysLTR1 as an important autophagy-modulating mechanism. The role of CysLTR1 in inflammation and cell stress has been exceedingly studied, but its involvement in the endosomal-lysosomal pathway is largely unknown. This current study provides new insights into basal activity of CysLTR1 on cellular endocytosis and the subsequent impact on downstream processes like autophagy.</p>\",\"PeriodicalId\":23207,\"journal\":{\"name\":\"Traffic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/tra.12881\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12881","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Cysteinyl leukotriene receptor 1 is a potent regulator of the endosomal-lysosomal system in the ARPE-19 retinal pigment epithelial cell line.
The endosomal-lysosomal system is central for cell homeostasis and comprises the functions and dynamics of particular organelles including endosomes, lysosomes and autophagosomes. In previous studies, we found that the cysteinyl leukotriene receptor 1 (CysLTR1) regulates autophagy in the retinal pigment epithelial cell line ARPE-19 under basal cellular conditions. However, the underlying mechanism by which CysLTR1 regulates autophagy is unknown. Thus, in the present study, the effects of CysLTR1 inhibition on the endosomal-lysosomal system are analyzed in detail to identify the role of CysLTR1 in cell homeostasis and autophagy regulation. CysLTR1 inhibition in ARPE-19 cells by Zafirlukast, a CysLTR1 antagonist, depleted the lysosomal pool. Furthermore, CysLTR1 antagonization reduced endocytic capacity and internalization of epidermal growth factor and decreased levels of the transferrin receptor, CD71. Serum starvation abolished the effect of Zafirlukast on the autophagic flux, which identifies the endocytic regulation of serum components by CysLTR1 as an important autophagy-modulating mechanism. The role of CysLTR1 in inflammation and cell stress has been exceedingly studied, but its involvement in the endosomal-lysosomal pathway is largely unknown. This current study provides new insights into basal activity of CysLTR1 on cellular endocytosis and the subsequent impact on downstream processes like autophagy.
期刊介绍:
Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement.
All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision.
Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.