{"title":"抗菌肽:抗结核治疗的一个有前途的策略。","authors":"Yu Ning, Lujuan Wang, Menglu Wang, Xiangying Meng, Jinjuan Qiao","doi":"10.2174/0929866530666230315113624","DOIUrl":null,"url":null,"abstract":"<p><p>The high global burden of tuberculosis (TB) and the increasing emergence of the drugresistant (DR) strain of Mycobacterium tuberculosis (<i>Mtb</i>) emphasize the urgent need for novel antimycobacterial agents. Antimicrobial peptides (AMPs) are small peptides widely existing in a variety of organisms and usually have amphiphilic cationic structures, which have a selective affinity to the negatively charged bacterial cell wall. Besides direct bactericidal mechanisms, including interacting with the bacterial cell membrane and interfering with the biosynthesis of the cell wall, DNA, or protein, some AMPs are involved in the host's innate immunity. AMPs are promising alternative or complementary agents for the treatment of DR-TB, given their various antibacterial mechanisms and low cytotoxicity. A large number of AMPs, synthetic or natural, from human to bacteriophage sources, have displayed potent anti-mycobacterial activity in vitro and in vivo. In this review, we summarized the features, antimycobacterial activity, and mechanisms of action of the AMPs according to their sources. Although AMPs have not yet met the expectations for clinical application due to their low bioavailabilities, high cost, and difficulties in large-scale production, their potent antimycobacterial activity and action mechanisms, which are different from conventional antibiotics, make them promising antibacterial agents against DR-<i>Mtb</i> in the future.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":"30 4","pages":"280-294"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Peptides: A Promising Strategy for Anti-tuberculosis Therapeutics.\",\"authors\":\"Yu Ning, Lujuan Wang, Menglu Wang, Xiangying Meng, Jinjuan Qiao\",\"doi\":\"10.2174/0929866530666230315113624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high global burden of tuberculosis (TB) and the increasing emergence of the drugresistant (DR) strain of Mycobacterium tuberculosis (<i>Mtb</i>) emphasize the urgent need for novel antimycobacterial agents. Antimicrobial peptides (AMPs) are small peptides widely existing in a variety of organisms and usually have amphiphilic cationic structures, which have a selective affinity to the negatively charged bacterial cell wall. Besides direct bactericidal mechanisms, including interacting with the bacterial cell membrane and interfering with the biosynthesis of the cell wall, DNA, or protein, some AMPs are involved in the host's innate immunity. AMPs are promising alternative or complementary agents for the treatment of DR-TB, given their various antibacterial mechanisms and low cytotoxicity. A large number of AMPs, synthetic or natural, from human to bacteriophage sources, have displayed potent anti-mycobacterial activity in vitro and in vivo. In this review, we summarized the features, antimycobacterial activity, and mechanisms of action of the AMPs according to their sources. Although AMPs have not yet met the expectations for clinical application due to their low bioavailabilities, high cost, and difficulties in large-scale production, their potent antimycobacterial activity and action mechanisms, which are different from conventional antibiotics, make them promising antibacterial agents against DR-<i>Mtb</i> in the future.</p>\",\"PeriodicalId\":20736,\"journal\":{\"name\":\"Protein and Peptide Letters\",\"volume\":\"30 4\",\"pages\":\"280-294\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein and Peptide Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0929866530666230315113624\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0929866530666230315113624","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Antimicrobial Peptides: A Promising Strategy for Anti-tuberculosis Therapeutics.
The high global burden of tuberculosis (TB) and the increasing emergence of the drugresistant (DR) strain of Mycobacterium tuberculosis (Mtb) emphasize the urgent need for novel antimycobacterial agents. Antimicrobial peptides (AMPs) are small peptides widely existing in a variety of organisms and usually have amphiphilic cationic structures, which have a selective affinity to the negatively charged bacterial cell wall. Besides direct bactericidal mechanisms, including interacting with the bacterial cell membrane and interfering with the biosynthesis of the cell wall, DNA, or protein, some AMPs are involved in the host's innate immunity. AMPs are promising alternative or complementary agents for the treatment of DR-TB, given their various antibacterial mechanisms and low cytotoxicity. A large number of AMPs, synthetic or natural, from human to bacteriophage sources, have displayed potent anti-mycobacterial activity in vitro and in vivo. In this review, we summarized the features, antimycobacterial activity, and mechanisms of action of the AMPs according to their sources. Although AMPs have not yet met the expectations for clinical application due to their low bioavailabilities, high cost, and difficulties in large-scale production, their potent antimycobacterial activity and action mechanisms, which are different from conventional antibiotics, make them promising antibacterial agents against DR-Mtb in the future.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis