交错水源捕获驱动的沿海盆地物种形成:全基因组SNP数据揭示的一种物种复合物bahiensis的扩散

IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Systematic Biology Pub Date : 2023-11-01 DOI:10.1093/sysbio/syad034
Jorge L Ramirez, Carolina B Machado, Paulo Roberto Antunes de Mello Affonso, Pedro M Galetti
{"title":"交错水源捕获驱动的沿海盆地物种形成:全基因组SNP数据揭示的一种物种复合物bahiensis的扩散","authors":"Jorge L Ramirez, Carolina B Machado, Paulo Roberto Antunes de Mello Affonso, Pedro M Galetti","doi":"10.1093/sysbio/syad034","DOIUrl":null,"url":null,"abstract":"<p><p>Past sea level changes and geological instability along watershed boundaries have largely influenced fish distribution across coastal basins, either by dispersal via palaeodrainages now submerged or by headwater captures, respectively. Accordingly, the South American Atlantic coast encompasses several small and isolated drainages that share a similar species composition, representing a suitable model to infer historical processes. Leporinus bahiensis is a freshwater fish species widespread along adjacent coastal basins over narrow continental shelf with no evidence of palaeodrainage connections at low sea level periods. Therefore, this study aimed to reconstruct its evolutionary history to infer the role of headwater captures in the dispersal process. To accomplish this, we employed molecular-level phylogenetic and population structure analyses based on Sanger sequences (5 genes) and genome-wide SNP data. Phylogenetic trees based on Sanger data were inconclusive, but SNPs data did support the monophyletic status of L. bahiensis. Both COI and SNP data revealed structured populations according to each hydrographic basin. Species delimitation analyses revealed from 3 (COI) to 5 (multilocus approach) MOTUs, corresponding to the sampled basins. An intricate biogeographic scenario was inferred and supported by Approximate Bayesian Computation (ABC) analysis. Specifically, a staggered pattern was revealed and characterized by sequential headwater captures from basins adjacent to upland drainages into small coastal basins at different periods. These headwater captures resulted in dispersal throughout contiguous coastal basins, followed by deep genetic divergence among lineages. To decipher such recent divergences, as herein represented by L. bahiensis populations, we used genome-wide SNPs data. Indeed, the combined use of genome-wide SNPs data and ABC method allowed us to reconstruct the evolutionary history and speciation of L. bahiensis. This framework might be useful in disentangling the diversification process in other neotropical fishes subject to a reticulate geological history.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627554/pdf/","citationCount":"0","resultStr":"{\"title\":\"Speciation in Coastal Basins Driven by Staggered Headwater Captures: Dispersal of a Species Complex, Leporinus bahiensis, as Revealed by Genome-wide SNP Data.\",\"authors\":\"Jorge L Ramirez, Carolina B Machado, Paulo Roberto Antunes de Mello Affonso, Pedro M Galetti\",\"doi\":\"10.1093/sysbio/syad034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Past sea level changes and geological instability along watershed boundaries have largely influenced fish distribution across coastal basins, either by dispersal via palaeodrainages now submerged or by headwater captures, respectively. Accordingly, the South American Atlantic coast encompasses several small and isolated drainages that share a similar species composition, representing a suitable model to infer historical processes. Leporinus bahiensis is a freshwater fish species widespread along adjacent coastal basins over narrow continental shelf with no evidence of palaeodrainage connections at low sea level periods. Therefore, this study aimed to reconstruct its evolutionary history to infer the role of headwater captures in the dispersal process. To accomplish this, we employed molecular-level phylogenetic and population structure analyses based on Sanger sequences (5 genes) and genome-wide SNP data. Phylogenetic trees based on Sanger data were inconclusive, but SNPs data did support the monophyletic status of L. bahiensis. Both COI and SNP data revealed structured populations according to each hydrographic basin. Species delimitation analyses revealed from 3 (COI) to 5 (multilocus approach) MOTUs, corresponding to the sampled basins. An intricate biogeographic scenario was inferred and supported by Approximate Bayesian Computation (ABC) analysis. Specifically, a staggered pattern was revealed and characterized by sequential headwater captures from basins adjacent to upland drainages into small coastal basins at different periods. These headwater captures resulted in dispersal throughout contiguous coastal basins, followed by deep genetic divergence among lineages. To decipher such recent divergences, as herein represented by L. bahiensis populations, we used genome-wide SNPs data. Indeed, the combined use of genome-wide SNPs data and ABC method allowed us to reconstruct the evolutionary history and speciation of L. bahiensis. This framework might be useful in disentangling the diversification process in other neotropical fishes subject to a reticulate geological history.</p>\",\"PeriodicalId\":22120,\"journal\":{\"name\":\"Systematic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627554/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/sysbio/syad034\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syad034","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

过去的海平面变化和分水岭边界沿线的地质不稳定在很大程度上影响了沿海盆地的鱼类分布,无论是通过现在被淹没的古排水沟扩散,还是通过源头捕获。因此,南美洲大西洋海岸包括几个小而孤立的流域,它们具有相似的物种组成,代表了推断历史过程的合适模型。巴氏鳞鱼是一种淡水鱼类,分布在狭窄的大陆架上的邻近沿海盆地,没有证据表明在低海平面时期存在古水系连接。因此,本研究旨在重建其进化史,以推断源头捕获在扩散过程中的作用。为了实现这一点,我们采用了基于Sanger序列(5个基因)和全基因组SNP数据的分子水平系统发育和群体结构分析。基于Sanger数据的系统发育树是不确定的,但SNPs数据确实支持L.bahiensis的单系状态。COI和SNP数据都揭示了每个水文流域的结构种群。物种划界分析揭示了3个(COI)到5个(多点方法)MOTU,对应于采样盆地。近似贝叶斯计算(ABC)分析推断并支持了一个复杂的生物地理学场景。具体而言,揭示了一种交错模式,其特征是在不同时期从高地流域附近的流域到小型沿海流域的连续源头捕获。这些源头捕获导致了整个毗连的沿海盆地的扩散,随后是谱系之间的深层遗传差异。为了破解这种最近的差异,正如本文中以巴伊恩氏乳杆菌种群为代表的那样,我们使用了全基因组SNPs数据。事实上,全基因组SNPs数据和ABC方法的结合使用使我们能够重建巴氏乳杆菌的进化史和物种形成。这一框架可能有助于解开其他受网状地质史影响的新热带鱼的多样化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speciation in Coastal Basins Driven by Staggered Headwater Captures: Dispersal of a Species Complex, Leporinus bahiensis, as Revealed by Genome-wide SNP Data.

Past sea level changes and geological instability along watershed boundaries have largely influenced fish distribution across coastal basins, either by dispersal via palaeodrainages now submerged or by headwater captures, respectively. Accordingly, the South American Atlantic coast encompasses several small and isolated drainages that share a similar species composition, representing a suitable model to infer historical processes. Leporinus bahiensis is a freshwater fish species widespread along adjacent coastal basins over narrow continental shelf with no evidence of palaeodrainage connections at low sea level periods. Therefore, this study aimed to reconstruct its evolutionary history to infer the role of headwater captures in the dispersal process. To accomplish this, we employed molecular-level phylogenetic and population structure analyses based on Sanger sequences (5 genes) and genome-wide SNP data. Phylogenetic trees based on Sanger data were inconclusive, but SNPs data did support the monophyletic status of L. bahiensis. Both COI and SNP data revealed structured populations according to each hydrographic basin. Species delimitation analyses revealed from 3 (COI) to 5 (multilocus approach) MOTUs, corresponding to the sampled basins. An intricate biogeographic scenario was inferred and supported by Approximate Bayesian Computation (ABC) analysis. Specifically, a staggered pattern was revealed and characterized by sequential headwater captures from basins adjacent to upland drainages into small coastal basins at different periods. These headwater captures resulted in dispersal throughout contiguous coastal basins, followed by deep genetic divergence among lineages. To decipher such recent divergences, as herein represented by L. bahiensis populations, we used genome-wide SNPs data. Indeed, the combined use of genome-wide SNPs data and ABC method allowed us to reconstruct the evolutionary history and speciation of L. bahiensis. This framework might be useful in disentangling the diversification process in other neotropical fishes subject to a reticulate geological history.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systematic Biology
Systematic Biology 生物-进化生物学
CiteScore
13.00
自引率
7.70%
发文量
70
审稿时长
6-12 weeks
期刊介绍: Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.
期刊最新文献
The limits of the metapopulation: Lineage fragmentation in a widespread terrestrial salamander (Plethodon cinereus) Dating in the Dark: Elevated Substitution Rates in Cave Cockroaches (Blattodea: Nocticolidae) Have Negative Impacts on Molecular Date Estimates. Clockor2: Inferring Global and Local Strict Molecular Clocks Using Root-to-Tip Regression. Phylogenomics of Neogastropoda: The Backbone Hidden in the Bush. Distinguishing Cophylogenetic Signal from Phylogenetic Congruence Clarifies the Interplay Between Evolutionary History and Species Interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1