{"title":"马尔可夫短噪声风险模型:Gerber-Shiu函数的数值方法。","authors":"Simon Pojer, Stefan Thonhauser","doi":"10.1007/s11009-023-10001-w","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we consider discounted penalty functions, also called Gerber-Shiu functions, in a Markovian shot-noise environment. At first, we exploit the underlying structure of piecewise-deterministic Markov processes (PDMPs) to show that these penalty functions solve certain partial integro-differential equations (PIDEs). Since these equations cannot be solved exactly, we develop a numerical scheme that allows us to determine an approximation of such functions. These numerical solutions can be identified with penalty functions of continuous-time Markov chains with finite state space. Finally, we show the convergence of the corresponding generators over suitable sets of functions to prove that these Markov chains converge weakly against the original PDMP. That gives us that the numerical approximations converge to the discounted penalty functions of the original Markovian shot-noise environment.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"25 1","pages":"17"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911511/pdf/","citationCount":"1","resultStr":"{\"title\":\"The Markovian Shot-noise Risk Model: A Numerical Method for Gerber-Shiu Functions.\",\"authors\":\"Simon Pojer, Stefan Thonhauser\",\"doi\":\"10.1007/s11009-023-10001-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we consider discounted penalty functions, also called Gerber-Shiu functions, in a Markovian shot-noise environment. At first, we exploit the underlying structure of piecewise-deterministic Markov processes (PDMPs) to show that these penalty functions solve certain partial integro-differential equations (PIDEs). Since these equations cannot be solved exactly, we develop a numerical scheme that allows us to determine an approximation of such functions. These numerical solutions can be identified with penalty functions of continuous-time Markov chains with finite state space. Finally, we show the convergence of the corresponding generators over suitable sets of functions to prove that these Markov chains converge weakly against the original PDMP. That gives us that the numerical approximations converge to the discounted penalty functions of the original Markovian shot-noise environment.</p>\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":\"25 1\",\"pages\":\"17\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911511/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-023-10001-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-023-10001-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
The Markovian Shot-noise Risk Model: A Numerical Method for Gerber-Shiu Functions.
In this paper, we consider discounted penalty functions, also called Gerber-Shiu functions, in a Markovian shot-noise environment. At first, we exploit the underlying structure of piecewise-deterministic Markov processes (PDMPs) to show that these penalty functions solve certain partial integro-differential equations (PIDEs). Since these equations cannot be solved exactly, we develop a numerical scheme that allows us to determine an approximation of such functions. These numerical solutions can be identified with penalty functions of continuous-time Markov chains with finite state space. Finally, we show the convergence of the corresponding generators over suitable sets of functions to prove that these Markov chains converge weakly against the original PDMP. That gives us that the numerical approximations converge to the discounted penalty functions of the original Markovian shot-noise environment.
期刊介绍:
Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics.
The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests:
-Algorithms-
Approximations-
Asymptotic Approximations & Expansions-
Combinatorial & Geometric Probability-
Communication Networks-
Extreme Value Theory-
Finance-
Image Analysis-
Inequalities-
Information Theory-
Mathematical Physics-
Molecular Biology-
Monte Carlo Methods-
Order Statistics-
Queuing Theory-
Reliability Theory-
Stochastic Processes