求助PDF
{"title":"脉冲电磁场对延迟修复1个月后周围神经再生的促进作用。","authors":"Zhu Keyan, Zhang Liqian, Xu Xinzhong, Jing Juehua, Xu Chungui","doi":"10.1002/bem.22443","DOIUrl":null,"url":null,"abstract":"The goal of this study was to determine if postoperative pulsed electromagnetic fields (PEMFs) could improve the neuromuscular rehabilitation after delayed repair of peripheral nerve injuries. Thirty‐six Sprague–Dawley rats were randomly divided into sham group, control group, and PEMFs group. The sciatic nerves were transected except for the control group. One month later, the nerve ends of the former two groups were reconnected. PEMFs group of rats was subjected to PEMFs thereafter. Control group and sham group received no treatment. Four and 8 weeks later, morphological and functional changes were measured. Four and eight weeks postoperatively, compared to sham group, the sciatic functional indices (SFIs) of PEMFs group were higher. More axons regenerated distally in PEMFs group. The fiber diameters of PEMFs group were larger. However, the axon diameters and myelin thicknesses were not different between these two groups. The brain‐derived neurotrophic factor and vascular endothelial growth factor expressions were higher in PEMFs group after 8 weeks. Semi‐quantitative IOD analysis for the intensity of positive staining indicated that there were more BDNF, VEGF, and NF200 in PEMFs group. It's concluded that PEMFs have effect on the axonal regeneration after delayed nerve repair of one month. The upregulated expressions of BDNF and VEGF may play roles in this process. © 2023 Bioelectromagnetics Society.","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulsed Electromagnetic Fields Improved Peripheral Nerve Regeneration After Delayed Repair of One Month\",\"authors\":\"Zhu Keyan, Zhang Liqian, Xu Xinzhong, Jing Juehua, Xu Chungui\",\"doi\":\"10.1002/bem.22443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this study was to determine if postoperative pulsed electromagnetic fields (PEMFs) could improve the neuromuscular rehabilitation after delayed repair of peripheral nerve injuries. Thirty‐six Sprague–Dawley rats were randomly divided into sham group, control group, and PEMFs group. The sciatic nerves were transected except for the control group. One month later, the nerve ends of the former two groups were reconnected. PEMFs group of rats was subjected to PEMFs thereafter. Control group and sham group received no treatment. Four and 8 weeks later, morphological and functional changes were measured. Four and eight weeks postoperatively, compared to sham group, the sciatic functional indices (SFIs) of PEMFs group were higher. More axons regenerated distally in PEMFs group. The fiber diameters of PEMFs group were larger. However, the axon diameters and myelin thicknesses were not different between these two groups. The brain‐derived neurotrophic factor and vascular endothelial growth factor expressions were higher in PEMFs group after 8 weeks. Semi‐quantitative IOD analysis for the intensity of positive staining indicated that there were more BDNF, VEGF, and NF200 in PEMFs group. It's concluded that PEMFs have effect on the axonal regeneration after delayed nerve repair of one month. The upregulated expressions of BDNF and VEGF may play roles in this process. © 2023 Bioelectromagnetics Society.\",\"PeriodicalId\":8956,\"journal\":{\"name\":\"Bioelectromagnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectromagnetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bem.22443\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22443","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Pulsed Electromagnetic Fields Improved Peripheral Nerve Regeneration After Delayed Repair of One Month
The goal of this study was to determine if postoperative pulsed electromagnetic fields (PEMFs) could improve the neuromuscular rehabilitation after delayed repair of peripheral nerve injuries. Thirty‐six Sprague–Dawley rats were randomly divided into sham group, control group, and PEMFs group. The sciatic nerves were transected except for the control group. One month later, the nerve ends of the former two groups were reconnected. PEMFs group of rats was subjected to PEMFs thereafter. Control group and sham group received no treatment. Four and 8 weeks later, morphological and functional changes were measured. Four and eight weeks postoperatively, compared to sham group, the sciatic functional indices (SFIs) of PEMFs group were higher. More axons regenerated distally in PEMFs group. The fiber diameters of PEMFs group were larger. However, the axon diameters and myelin thicknesses were not different between these two groups. The brain‐derived neurotrophic factor and vascular endothelial growth factor expressions were higher in PEMFs group after 8 weeks. Semi‐quantitative IOD analysis for the intensity of positive staining indicated that there were more BDNF, VEGF, and NF200 in PEMFs group. It's concluded that PEMFs have effect on the axonal regeneration after delayed nerve repair of one month. The upregulated expressions of BDNF and VEGF may play roles in this process. © 2023 Bioelectromagnetics Society.