单细胞转录组分析揭示了小鼠门牙牙髓中不同基因的表达模式。

IF 1 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY International Journal of Developmental Biology Pub Date : 2023-01-01 DOI:10.1387/ijdb.220173db
Badam Enkhmandakh, Dashzeveg Bayarsaihan
{"title":"单细胞转录组分析揭示了小鼠门牙牙髓中不同基因的表达模式。","authors":"Badam Enkhmandakh,&nbsp;Dashzeveg Bayarsaihan","doi":"10.1387/ijdb.220173db","DOIUrl":null,"url":null,"abstract":"<p><p>SOX transcription factors play key roles in cell differentiation and cell fate determination during development. Using single-cell RNA-sequencing data, we examined the expression profiles of <i>Sox</i> genes in the mouse incisor dental pulp. Our analysis showed that <i>Sox4</i>, <i>Sox5</i>, <i>Sox9</i>, <i>Sox11</i>, and <i>Sox12</i> are mainly expressed in mesenchymal stem/stromal cells (MSCs) representing osteogenic cells at different stages of differentiation. We found that in several MSCs, <i>Sox</i> genes co-expressed with regulatory genes such as <i>Sp7</i>, <i>Satb2</i>, <i>Msx1</i>, <i>Snai2</i>, <i>Dlx1</i>, <i>Twist2</i>, and <i>Tfap2a</i>. In addition, <i>Sox</i> family genes colocalized with <i>Runx2</i> and <i>Lef1</i>, which are highly enriched in MSCs undergoing osteoblast differentiation. A protein interaction network analysis uncovered that CREBBP, CEBPB, TLE1, TWIST1, and members of the HDAC and SMAD families are interacting partners of RUNX2 and LEF1 during skeletal development. Collectively, the distinct expression patterns of the SOX transcription factors suggest that they play essential regulatory roles in directing lineage-specific gene expression during differentiation of MSCs.</p>","PeriodicalId":50329,"journal":{"name":"International Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell transcriptome profiling reveals distinct expression patterns among genes in the mouse incisor dental pulp.\",\"authors\":\"Badam Enkhmandakh,&nbsp;Dashzeveg Bayarsaihan\",\"doi\":\"10.1387/ijdb.220173db\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SOX transcription factors play key roles in cell differentiation and cell fate determination during development. Using single-cell RNA-sequencing data, we examined the expression profiles of <i>Sox</i> genes in the mouse incisor dental pulp. Our analysis showed that <i>Sox4</i>, <i>Sox5</i>, <i>Sox9</i>, <i>Sox11</i>, and <i>Sox12</i> are mainly expressed in mesenchymal stem/stromal cells (MSCs) representing osteogenic cells at different stages of differentiation. We found that in several MSCs, <i>Sox</i> genes co-expressed with regulatory genes such as <i>Sp7</i>, <i>Satb2</i>, <i>Msx1</i>, <i>Snai2</i>, <i>Dlx1</i>, <i>Twist2</i>, and <i>Tfap2a</i>. In addition, <i>Sox</i> family genes colocalized with <i>Runx2</i> and <i>Lef1</i>, which are highly enriched in MSCs undergoing osteoblast differentiation. A protein interaction network analysis uncovered that CREBBP, CEBPB, TLE1, TWIST1, and members of the HDAC and SMAD families are interacting partners of RUNX2 and LEF1 during skeletal development. Collectively, the distinct expression patterns of the SOX transcription factors suggest that they play essential regulatory roles in directing lineage-specific gene expression during differentiation of MSCs.</p>\",\"PeriodicalId\":50329,\"journal\":{\"name\":\"International Journal of Developmental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.220173db\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1387/ijdb.220173db","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

SOX转录因子在细胞分化和发育过程中决定细胞命运中起着关键作用。利用单细胞rna测序数据,我们检测了Sox基因在小鼠切牙牙髓中的表达谱。我们的分析表明,Sox4、Sox5、Sox9、Sox11和Sox12主要在代表成骨细胞不同分化阶段的间充质干细胞/基质细胞(MSCs)中表达。我们发现在一些间质干细胞中,Sox基因与调控基因如Sp7、Satb2、Msx1、Snai2、Dlx1、Twist2和Tfap2a共表达。此外,Sox家族基因与Runx2和Lef1共定位,在成骨细胞分化的MSCs中高度富集。一项蛋白质相互作用网络分析发现,CREBBP、CEBPB、TLE1、TWIST1以及HDAC和SMAD家族成员在骨骼发育过程中是RUNX2和LEF1的相互作用伙伴。总的来说,SOX转录因子的不同表达模式表明它们在MSCs分化过程中指导谱系特异性基因表达方面发挥着重要的调节作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-cell transcriptome profiling reveals distinct expression patterns among genes in the mouse incisor dental pulp.

SOX transcription factors play key roles in cell differentiation and cell fate determination during development. Using single-cell RNA-sequencing data, we examined the expression profiles of Sox genes in the mouse incisor dental pulp. Our analysis showed that Sox4, Sox5, Sox9, Sox11, and Sox12 are mainly expressed in mesenchymal stem/stromal cells (MSCs) representing osteogenic cells at different stages of differentiation. We found that in several MSCs, Sox genes co-expressed with regulatory genes such as Sp7, Satb2, Msx1, Snai2, Dlx1, Twist2, and Tfap2a. In addition, Sox family genes colocalized with Runx2 and Lef1, which are highly enriched in MSCs undergoing osteoblast differentiation. A protein interaction network analysis uncovered that CREBBP, CEBPB, TLE1, TWIST1, and members of the HDAC and SMAD families are interacting partners of RUNX2 and LEF1 during skeletal development. Collectively, the distinct expression patterns of the SOX transcription factors suggest that they play essential regulatory roles in directing lineage-specific gene expression during differentiation of MSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
审稿时长
2 months
期刊介绍: The International Journal of Developmental Biology (ISSN: 0214- 6282) is an independent, not for profit scholarly journal, published by scientists, for scientists. The journal publishes papers which throw light on our understanding of animal and plant developmental mechanisms in health and disease and, in particular, research which elucidates the developmental principles underlying stem cell properties and cancer. Technical, historical or theoretical approaches also fall within the scope of the journal. Criteria for acceptance include scientific excellence, novelty and quality of presentation of data and illustrations. Advantages of publishing in the journal include: rapid publication; free unlimited color reproduction; no page charges; free publication of online supplementary material; free publication of audio files (MP3 type); one-to-one personalized attention at all stages during the editorial process. An easy online submission facility and an open online access option, by means of which papers can be published without any access restrictions. In keeping with its mission, the journal offers free online subscriptions to academic institutions in developing countries.
期刊最新文献
Single-cell transcriptome profiling reveals distinct expression patterns among genes in the mouse incisor dental pulp. DNA methyltransferase (Dnmt) silencing causes increased Cdx2 and Nanog levels in surviving embryos. Characterization of the developing axolotl nasal cavity supports multiple evolution of the vertebrate choana. The Dyslexia-associated gene KIAA0319L is involved in neuronal migration in the developing chick visual system. Circ-JA760602 promotes the apoptosis of hypoxia-induced cardiomyocytes by transcriptionally suppressing BCL2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1