新出现的污染物对斑马鱼的鸡尾酒效应:纳米塑料和药物苯海拉明

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES NanoImpact Pub Date : 2023-04-01 DOI:10.1016/j.impact.2023.100456
Angela Barreto , Joana Santos , Vânia Calisto , Luciana S. Rocha , Mónica J.B. Amorim , Vera L. Maria
{"title":"新出现的污染物对斑马鱼的鸡尾酒效应:纳米塑料和药物苯海拉明","authors":"Angela Barreto ,&nbsp;Joana Santos ,&nbsp;Vânia Calisto ,&nbsp;Luciana S. Rocha ,&nbsp;Mónica J.B. Amorim ,&nbsp;Vera L. Maria","doi":"10.1016/j.impact.2023.100456","DOIUrl":null,"url":null,"abstract":"<div><p>Nanoplastics (NPLs) became ubiquitous in the environment, from the air we breathe to the food we eat. One of the main concerns about the NPLs risks is their role as carrier of other environmental contaminants, potentially increasing their uptake, bioaccumulation and toxicity to the organisms. Therefore, the main aim of this study was to understand how the presence of polystyrene NPLs (∅ 44 nm) will influence the toxicity (synergism, additivity or antagonism) of the antihistamine diphenhydramine (DPH), towards zebrafish (<em>Danio rerio</em>) embryos, when in dual mixtures. After 96 hours (h) exposure, at the organismal level, NPLs (0.015 or 1.5 mg/L) + DPH (10 mg/L) induced embryo mortality (90%) and malformations (100%) and decreased hatching (80%) and heartbeat rates (60%). After 120 h exposure, NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L) decreased larvae swimming distance (30–40%). At the biochemical level, increased glutathione S-transferases (55–122%) and cholinesterase (182–343%) activities were found after 96 h exposure to NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L). However, catalase (CAT) activity remained similar to the control group in the mixtures, inhibiting the effects detected after the exposure to 1.5 mg/L NPLs alone (increased 230% of CAT activity). In general, the effects of dual combination – NPLs + DPH (even at concentrations as low as 10 μg/L of DPH) – were more harmful than the correspondent individual exposures, showing the synergistic interactions of the dual mixture and answering to the main question of this work. The obtained results, namely the altered toxicity patterns of NPLs + DPH compared with the individual exposures, show the importance of an environmental risk assessment considering NPLs as a co-contaminant due to the potential NPLs role as vector for other contaminants.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cocktail effects of emerging contaminants on zebrafish: Nanoplastics and the pharmaceutical diphenhydramine\",\"authors\":\"Angela Barreto ,&nbsp;Joana Santos ,&nbsp;Vânia Calisto ,&nbsp;Luciana S. Rocha ,&nbsp;Mónica J.B. Amorim ,&nbsp;Vera L. Maria\",\"doi\":\"10.1016/j.impact.2023.100456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanoplastics (NPLs) became ubiquitous in the environment, from the air we breathe to the food we eat. One of the main concerns about the NPLs risks is their role as carrier of other environmental contaminants, potentially increasing their uptake, bioaccumulation and toxicity to the organisms. Therefore, the main aim of this study was to understand how the presence of polystyrene NPLs (∅ 44 nm) will influence the toxicity (synergism, additivity or antagonism) of the antihistamine diphenhydramine (DPH), towards zebrafish (<em>Danio rerio</em>) embryos, when in dual mixtures. After 96 hours (h) exposure, at the organismal level, NPLs (0.015 or 1.5 mg/L) + DPH (10 mg/L) induced embryo mortality (90%) and malformations (100%) and decreased hatching (80%) and heartbeat rates (60%). After 120 h exposure, NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L) decreased larvae swimming distance (30–40%). At the biochemical level, increased glutathione S-transferases (55–122%) and cholinesterase (182–343%) activities were found after 96 h exposure to NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L). However, catalase (CAT) activity remained similar to the control group in the mixtures, inhibiting the effects detected after the exposure to 1.5 mg/L NPLs alone (increased 230% of CAT activity). In general, the effects of dual combination – NPLs + DPH (even at concentrations as low as 10 μg/L of DPH) – were more harmful than the correspondent individual exposures, showing the synergistic interactions of the dual mixture and answering to the main question of this work. The obtained results, namely the altered toxicity patterns of NPLs + DPH compared with the individual exposures, show the importance of an environmental risk assessment considering NPLs as a co-contaminant due to the potential NPLs role as vector for other contaminants.</p></div>\",\"PeriodicalId\":18786,\"journal\":{\"name\":\"NanoImpact\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoImpact\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452074823000071\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074823000071","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

纳米塑料在环境中变得无处不在,从我们呼吸的空气到我们吃的食物。NPL风险的主要担忧之一是其作为其他环境污染物载体的作用,可能会增加其吸收、生物累积和对生物体的毒性。因此,本研究的主要目的是了解在双重混合物中,聚苯乙烯NPL(∅44nm)的存在将如何影响抗组胺药苯海拉明(DPH)对斑马鱼胚胎的毒性(协同性、添加性或拮抗性)。暴露96小时后,在生物体水平上,NPL(0.015或1.5 mg/L)+DPH(10 mg/L)导致胚胎死亡率(90%)和畸形(100%),孵化率(80%)和心跳率(60%)降低。暴露120小时后,NPLs(0.015或1.5 mg/L)+DPH(0.01 mg/L)降低了幼虫的游泳距离(30-40%)。在生化水平上,暴露于NPLs(0.015或1.5 mg/L)+DPH(0.01 mg/L)96小时后,谷胱甘肽S-转移酶(55-122%)和胆碱酯酶(182343%)活性增加。然而,混合物中的过氧化氢酶(CAT)活性与对照组相似,抑制了单独暴露于1.5 mg/L NPLs后检测到的影响(CAT活性增加230%)。总的来说,双重组合的影响——NPLs+DPH(即使在低至10μg/L的DPH浓度下)——比相应的单独暴露更有害,表明了双重混合物的协同作用,并回答了这项工作的主要问题。所获得的结果,即与个体暴露相比,NPL+DPH的毒性模式的改变,表明了将NPLs视为共同污染物的环境风险评估的重要性,因为NPLs可能是其他污染物的载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cocktail effects of emerging contaminants on zebrafish: Nanoplastics and the pharmaceutical diphenhydramine

Nanoplastics (NPLs) became ubiquitous in the environment, from the air we breathe to the food we eat. One of the main concerns about the NPLs risks is their role as carrier of other environmental contaminants, potentially increasing their uptake, bioaccumulation and toxicity to the organisms. Therefore, the main aim of this study was to understand how the presence of polystyrene NPLs (∅ 44 nm) will influence the toxicity (synergism, additivity or antagonism) of the antihistamine diphenhydramine (DPH), towards zebrafish (Danio rerio) embryos, when in dual mixtures. After 96 hours (h) exposure, at the organismal level, NPLs (0.015 or 1.5 mg/L) + DPH (10 mg/L) induced embryo mortality (90%) and malformations (100%) and decreased hatching (80%) and heartbeat rates (60%). After 120 h exposure, NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L) decreased larvae swimming distance (30–40%). At the biochemical level, increased glutathione S-transferases (55–122%) and cholinesterase (182–343%) activities were found after 96 h exposure to NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L). However, catalase (CAT) activity remained similar to the control group in the mixtures, inhibiting the effects detected after the exposure to 1.5 mg/L NPLs alone (increased 230% of CAT activity). In general, the effects of dual combination – NPLs + DPH (even at concentrations as low as 10 μg/L of DPH) – were more harmful than the correspondent individual exposures, showing the synergistic interactions of the dual mixture and answering to the main question of this work. The obtained results, namely the altered toxicity patterns of NPLs + DPH compared with the individual exposures, show the importance of an environmental risk assessment considering NPLs as a co-contaminant due to the potential NPLs role as vector for other contaminants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NanoImpact
NanoImpact Social Sciences-Safety Research
CiteScore
11.00
自引率
6.10%
发文量
69
审稿时长
23 days
期刊介绍: NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.
期刊最新文献
Biodistribution and toxic potential of silver nanoparticles when introduced to the female rat reproductive tract A multi-omics approach reveals differences in toxicity and mechanisms in rice (Oryza sativa L.) exposed to anatase or rutile TiO2 nanoparticles Bridging the gap: Innovative human-based in vitro approaches for nanomaterials hazard assessment and their role in safe and sustainable by design, risk assessment, and life cycle assessment Response to shock load of titanium dioxide nanoparticles on aerobic granular sludge and algal-bacterial granular sludge processes Gut-lung microbiota dynamics in mice exposed to Nanoplastics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1