锥束计算机断层结构分析可以帮助鉴别牙源性和非牙源性上颌鼻窦炎。

IF 1.7 Q3 DENTISTRY, ORAL SURGERY & MEDICINE Imaging Science in Dentistry Pub Date : 2023-03-01 DOI:10.5624/isd.20220166
Andre Luiz Ferreira Costa, Karolina Aparecida Castilho Fardim, Isabela Teixeira Ribeiro, Maria Aparecida Neves Jardini, Paulo Henrique Braz-Silva, Kaan Orhan, Sérgio Lúcio Pereira de Castro Lopes
{"title":"锥束计算机断层结构分析可以帮助鉴别牙源性和非牙源性上颌鼻窦炎。","authors":"Andre Luiz Ferreira Costa,&nbsp;Karolina Aparecida Castilho Fardim,&nbsp;Isabela Teixeira Ribeiro,&nbsp;Maria Aparecida Neves Jardini,&nbsp;Paulo Henrique Braz-Silva,&nbsp;Kaan Orhan,&nbsp;Sérgio Lúcio Pereira de Castro Lopes","doi":"10.5624/isd.20220166","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to assess texture analysis (TA) of cone-beam computed tomography (CBCT) images as a quantitative tool for the differential diagnosis of odontogenic and non-odontogenic maxillary sinusitis (OS and NOS, respectively).</p><p><strong>Materials and methods: </strong>CBCT images of 40 patients diagnosed with OS (N=20) and NOS (N=20) were evaluated. The gray level co-occurrence (GLCM) matrix parameters, and gray level run length matrix texture (GLRLM) parameters were extracted using manually placed regions of interest on lesion images. Seven texture parameters were calculated using GLCM and 4 parameters using GLRLM. The Mann-Whitney test was used for comparisons between the groups, and the Levene test was performed to confirm the homogeneity of variance (α=5%).</p><p><strong>Results: </strong>The results showed statistically significant differences (<i>P</i><0.05) between the OS and NOS patients regarding 3 TA parameters. NOS patients presented higher values for contrast, while OS patients presented higher values for correlation and inverse difference moment. Greater textural homogeneity was observed in the OS patients than in the NOS patients, with statistically significant differences in standard deviations between the groups for correlation, sum of squares, sum of entropy, and entropy.</p><p><strong>Conclusion: </strong>TA enabled quantitative differentiation between OS and NOS on CBCT images by using the parameters of contrast, correlation, and inverse difference moment.</p>","PeriodicalId":51714,"journal":{"name":"Imaging Science in Dentistry","volume":"53 1","pages":"43-51"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/12/db/isd-53-43.PMC10060763.pdf","citationCount":"0","resultStr":"{\"title\":\"Cone-beam computed tomography texture analysis can help differentiate odontogenic and non-odontogenic maxillary sinusitis.\",\"authors\":\"Andre Luiz Ferreira Costa,&nbsp;Karolina Aparecida Castilho Fardim,&nbsp;Isabela Teixeira Ribeiro,&nbsp;Maria Aparecida Neves Jardini,&nbsp;Paulo Henrique Braz-Silva,&nbsp;Kaan Orhan,&nbsp;Sérgio Lúcio Pereira de Castro Lopes\",\"doi\":\"10.5624/isd.20220166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aimed to assess texture analysis (TA) of cone-beam computed tomography (CBCT) images as a quantitative tool for the differential diagnosis of odontogenic and non-odontogenic maxillary sinusitis (OS and NOS, respectively).</p><p><strong>Materials and methods: </strong>CBCT images of 40 patients diagnosed with OS (N=20) and NOS (N=20) were evaluated. The gray level co-occurrence (GLCM) matrix parameters, and gray level run length matrix texture (GLRLM) parameters were extracted using manually placed regions of interest on lesion images. Seven texture parameters were calculated using GLCM and 4 parameters using GLRLM. The Mann-Whitney test was used for comparisons between the groups, and the Levene test was performed to confirm the homogeneity of variance (α=5%).</p><p><strong>Results: </strong>The results showed statistically significant differences (<i>P</i><0.05) between the OS and NOS patients regarding 3 TA parameters. NOS patients presented higher values for contrast, while OS patients presented higher values for correlation and inverse difference moment. Greater textural homogeneity was observed in the OS patients than in the NOS patients, with statistically significant differences in standard deviations between the groups for correlation, sum of squares, sum of entropy, and entropy.</p><p><strong>Conclusion: </strong>TA enabled quantitative differentiation between OS and NOS on CBCT images by using the parameters of contrast, correlation, and inverse difference moment.</p>\",\"PeriodicalId\":51714,\"journal\":{\"name\":\"Imaging Science in Dentistry\",\"volume\":\"53 1\",\"pages\":\"43-51\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/12/db/isd-53-43.PMC10060763.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging Science in Dentistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5624/isd.20220166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging Science in Dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5624/isd.20220166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在评估锥形束计算机断层扫描(CBCT)图像的纹理分析(TA)作为鉴别牙源性和非牙源性上颌鼻窦炎(OS和NOS)的定量工具。材料与方法:对诊断为OS (N=20)和NOS (N=20)的40例患者的CBCT图像进行评价。通过在病变图像上手动放置感兴趣区域,提取灰度共生矩阵(GLCM)参数和灰度运行长度矩阵纹理(GLRLM)参数。使用GLCM计算了7个纹理参数,使用GLRLM计算了4个纹理参数。组间比较采用Mann-Whitney检验,方差齐性采用Levene检验(α=5%)。结论:TA可以通过对比、相关、差矩逆等参数对CBCT图像进行OS与NOS的定量区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cone-beam computed tomography texture analysis can help differentiate odontogenic and non-odontogenic maxillary sinusitis.

Purpose: This study aimed to assess texture analysis (TA) of cone-beam computed tomography (CBCT) images as a quantitative tool for the differential diagnosis of odontogenic and non-odontogenic maxillary sinusitis (OS and NOS, respectively).

Materials and methods: CBCT images of 40 patients diagnosed with OS (N=20) and NOS (N=20) were evaluated. The gray level co-occurrence (GLCM) matrix parameters, and gray level run length matrix texture (GLRLM) parameters were extracted using manually placed regions of interest on lesion images. Seven texture parameters were calculated using GLCM and 4 parameters using GLRLM. The Mann-Whitney test was used for comparisons between the groups, and the Levene test was performed to confirm the homogeneity of variance (α=5%).

Results: The results showed statistically significant differences (P<0.05) between the OS and NOS patients regarding 3 TA parameters. NOS patients presented higher values for contrast, while OS patients presented higher values for correlation and inverse difference moment. Greater textural homogeneity was observed in the OS patients than in the NOS patients, with statistically significant differences in standard deviations between the groups for correlation, sum of squares, sum of entropy, and entropy.

Conclusion: TA enabled quantitative differentiation between OS and NOS on CBCT images by using the parameters of contrast, correlation, and inverse difference moment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Imaging Science in Dentistry
Imaging Science in Dentistry DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
2.90
自引率
11.10%
发文量
42
期刊最新文献
Classification of mandibular molar furcation involvement in periapical radiographs by deep learning. Clinical validity and precision of deep learning-based cone-beam computed tomography automatic landmarking algorithm. Combination of metal artifact reduction and sharpening filter application for horizontal root fracture diagnosis in teeth adjacent to a zirconia implant. Erratum to: McCune-Albright syndrome with acromegaly: A case report with characteristic radiographic features of fibrous dysplasia. Evaluation of deep learning and convolutional neural network algorithms for mandibular fracture detection using radiographic images: A systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1