小型女性乘员在正面撞击中的仰卧和直立坐姿反应。

IF 1.7 4区 医学 Q4 BIOPHYSICS Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2024-03-01 DOI:10.1115/1.4062708
Karthik Somasundaram, Hans Hauschild, Klaus Driesslein, Frank A Pintar
{"title":"小型女性乘员在正面撞击中的仰卧和直立坐姿反应。","authors":"Karthik Somasundaram, Hans Hauschild, Klaus Driesslein, Frank A Pintar","doi":"10.1115/1.4062708","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to compare the kinematics of the head-neck, torso, pelvis, and lower extremities and document injuries and their patterns to small female occupants in frontal impacts with upright and reclined postures using an experimental model. Six postmortem human surrogates (PMHS) with a mean stature of 154 ± 9.0 cm and mass of 49 ± 12 kg were equally divided between upright and reclined groups (seatback: 25 deg and 45 deg), restrained by a three-point integrated belt, positioned on a semirigid seat, and exposed to low and moderate crash velocities (15 km/h and 32 km/h respectively). The response between the upright and reclined postures was similar in magnitude and curve morphology. While none of the differences were statistically significant, the thoracic spine demonstrated increased downward (+Z) displacement, and the head demonstrated an increased horizontal (+X) displacement for the reclined occupants. In contrast, the upright occupants showed a slightly increased downward (+Z) displacement at the head, but the torso displaced primarily along the +X direction. The posture angles between the two groups were similar at the pelvis and different at the thorax and head. At 32 km/h, both cohorts exhibited multiple rib failure, with upright specimens having a greater number of severe fractures. Although MAIS was the same in both groups, the upright specimens had more bi-cortical rib fractures, suggesting the potential for pneumothorax. This preliminary study may be useful in validating physical (ATDs) and computational (HBMs) surrogates.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Female Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts.\",\"authors\":\"Karthik Somasundaram, Hans Hauschild, Klaus Driesslein, Frank A Pintar\",\"doi\":\"10.1115/1.4062708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study was to compare the kinematics of the head-neck, torso, pelvis, and lower extremities and document injuries and their patterns to small female occupants in frontal impacts with upright and reclined postures using an experimental model. Six postmortem human surrogates (PMHS) with a mean stature of 154 ± 9.0 cm and mass of 49 ± 12 kg were equally divided between upright and reclined groups (seatback: 25 deg and 45 deg), restrained by a three-point integrated belt, positioned on a semirigid seat, and exposed to low and moderate crash velocities (15 km/h and 32 km/h respectively). The response between the upright and reclined postures was similar in magnitude and curve morphology. While none of the differences were statistically significant, the thoracic spine demonstrated increased downward (+Z) displacement, and the head demonstrated an increased horizontal (+X) displacement for the reclined occupants. In contrast, the upright occupants showed a slightly increased downward (+Z) displacement at the head, but the torso displaced primarily along the +X direction. The posture angles between the two groups were similar at the pelvis and different at the thorax and head. At 32 km/h, both cohorts exhibited multiple rib failure, with upright specimens having a greater number of severe fractures. Although MAIS was the same in both groups, the upright specimens had more bi-cortical rib fractures, suggesting the potential for pneumothorax. This preliminary study may be useful in validating physical (ATDs) and computational (HBMs) surrogates.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062708\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062708","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过一个实验模型,比较头部-颈部、躯干、骨盆和下肢的运动学特性,并记录小型女性乘员在直立和倾斜姿势的正面撞击中受到的伤害及其模式。将六名平均身高为 154 ± 9.0 厘米、体重为 49 ± 12 千克的死后人体代用者(PMHS)平均分为直立组和后仰组(座椅靠背:25 度和 45 度),使用三点式综合安全带进行约束,将其放置在半刚性座椅上,并受到低速和中速碰撞(分别为 15 千米/小时和 32 千米/小时)的影响。直立姿势和倾斜姿势之间的反应在幅度和曲线形态上相似。虽然两者之间的差异在统计学上都不显著,但斜躺者的胸椎向下(+Z)位移增加,头部水平(+X)位移增加。相反,直立者的头部向下(+Z)位移略有增加,但躯干主要沿+X方向位移。两组乘客骨盆的姿势角度相似,而胸部和头部的姿势角度不同。在 32 公里/小时的速度下,两组样本都出现了多根肋骨断裂的情况,直立样本出现严重骨折的数量更多。虽然两组的 MAIS 值相同,但直立标本的双皮质肋骨骨折更多,表明有可能发生气胸。这项初步研究可能有助于验证物理(ATDs)和计算(HBMs)代用指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Small Female Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts.

The objective of this study was to compare the kinematics of the head-neck, torso, pelvis, and lower extremities and document injuries and their patterns to small female occupants in frontal impacts with upright and reclined postures using an experimental model. Six postmortem human surrogates (PMHS) with a mean stature of 154 ± 9.0 cm and mass of 49 ± 12 kg were equally divided between upright and reclined groups (seatback: 25 deg and 45 deg), restrained by a three-point integrated belt, positioned on a semirigid seat, and exposed to low and moderate crash velocities (15 km/h and 32 km/h respectively). The response between the upright and reclined postures was similar in magnitude and curve morphology. While none of the differences were statistically significant, the thoracic spine demonstrated increased downward (+Z) displacement, and the head demonstrated an increased horizontal (+X) displacement for the reclined occupants. In contrast, the upright occupants showed a slightly increased downward (+Z) displacement at the head, but the torso displaced primarily along the +X direction. The posture angles between the two groups were similar at the pelvis and different at the thorax and head. At 32 km/h, both cohorts exhibited multiple rib failure, with upright specimens having a greater number of severe fractures. Although MAIS was the same in both groups, the upright specimens had more bi-cortical rib fractures, suggesting the potential for pneumothorax. This preliminary study may be useful in validating physical (ATDs) and computational (HBMs) surrogates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
期刊最新文献
Image-Based Estimation of Left Ventricular Myocardial Stiffness. Phenomenological Muscle Constitutive Model With Actin-Titin Binding for Simulating Active Stretching. Regulatory Role of Collagen XI in the Establishment of Mechanical Properties of Tendons and Ligaments in Mice Is Tissue Dependent. Study of the Mechanism of Perceived Rotational Acceleration of a Bionic Semicircular Canal on the Basis of the "Circular Geometry Hypothesis". Walking Slope and Heavy Backpacks Affect Peak and Impulsive Lumbar Joint Contact Forces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1