Kavita M Jeerage, Cheryle N Beuning, Adam J Friss, L Cinnamon Bidwell, Tara M Lovestead
{"title":"在合法市场产品吸入前后,用撞击过滤装置收集呼吸气溶胶中的四氢大麻酚——一项试点研究。","authors":"Kavita M Jeerage, Cheryle N Beuning, Adam J Friss, L Cinnamon Bidwell, Tara M Lovestead","doi":"10.1088/1752-7163/acd410","DOIUrl":null,"url":null,"abstract":"<p><p>An accurate cannabis breathalyzer based on quantitation of the psychoactive cannabinoid Δ<sup>9</sup>-tetrahydrocannabinol (THC) could be an important tool for deterring impaired driving. Such a device does not exist. Simply translating what is known about alcohol breathalyzers is insufficient because ethanol is detected as a vapor. THC has extremely low volatility and is hypothesized to be carried in breath by aerosol particles formed from lung surfactant. Exhaled breath aerosols can be recovered from electrostatic filter devices, but consistent quantitative results across multiple studies have not been demonstrated. We used a simple-to-use impaction filter device to collect breath aerosols from participants before and after they smoked a legal market cannabis flower containing ∼25% Δ<sup>9</sup>-tetrahydrocannabinolic acid. Breath collection occurred at an intake session (baseline-intake) and four weeks later in a federally-compliant mobile laboratory 15 min before (baseline-experimental) and 1 h after cannabis use (post-use). Cannabis use was in the participant's residence. Participants were asked to follow a breathing maneuver designed to increase aerosol production. Breath extracts were analyzed by liquid chromatography with tandem mass spectrometry with multiple reaction monitoring of two transitions for analytes and their deuterated internal standards. Over more than 1 yr, 42 breath samples from 18 participants were collected and analyzed in six batches. THC was quantified in 31% of baseline-intake, 36% of baseline-experimental, and 80% of 1 h post-use breath extracts. The quantities observed 1 h post-use are compared to those reported in six other pilot studies that sampled breath at known intervals following cannabis use and are discussed with respect to participant characteristics and breath sampling protocols. Larger studies with verified abstinence and more post-use timepoints are necessary to generate statistically significant data to develop meaningful cannabis breathalyzer technology.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"17 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201171/pdf/","citationCount":"2","resultStr":"{\"title\":\"THC in breath aerosols collected with an impaction filter device before and after legal-market product inhalation-a pilot study.\",\"authors\":\"Kavita M Jeerage, Cheryle N Beuning, Adam J Friss, L Cinnamon Bidwell, Tara M Lovestead\",\"doi\":\"10.1088/1752-7163/acd410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An accurate cannabis breathalyzer based on quantitation of the psychoactive cannabinoid Δ<sup>9</sup>-tetrahydrocannabinol (THC) could be an important tool for deterring impaired driving. Such a device does not exist. Simply translating what is known about alcohol breathalyzers is insufficient because ethanol is detected as a vapor. THC has extremely low volatility and is hypothesized to be carried in breath by aerosol particles formed from lung surfactant. Exhaled breath aerosols can be recovered from electrostatic filter devices, but consistent quantitative results across multiple studies have not been demonstrated. We used a simple-to-use impaction filter device to collect breath aerosols from participants before and after they smoked a legal market cannabis flower containing ∼25% Δ<sup>9</sup>-tetrahydrocannabinolic acid. Breath collection occurred at an intake session (baseline-intake) and four weeks later in a federally-compliant mobile laboratory 15 min before (baseline-experimental) and 1 h after cannabis use (post-use). Cannabis use was in the participant's residence. Participants were asked to follow a breathing maneuver designed to increase aerosol production. Breath extracts were analyzed by liquid chromatography with tandem mass spectrometry with multiple reaction monitoring of two transitions for analytes and their deuterated internal standards. Over more than 1 yr, 42 breath samples from 18 participants were collected and analyzed in six batches. THC was quantified in 31% of baseline-intake, 36% of baseline-experimental, and 80% of 1 h post-use breath extracts. The quantities observed 1 h post-use are compared to those reported in six other pilot studies that sampled breath at known intervals following cannabis use and are discussed with respect to participant characteristics and breath sampling protocols. Larger studies with verified abstinence and more post-use timepoints are necessary to generate statistically significant data to develop meaningful cannabis breathalyzer technology.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201171/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/acd410\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/acd410","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
THC in breath aerosols collected with an impaction filter device before and after legal-market product inhalation-a pilot study.
An accurate cannabis breathalyzer based on quantitation of the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) could be an important tool for deterring impaired driving. Such a device does not exist. Simply translating what is known about alcohol breathalyzers is insufficient because ethanol is detected as a vapor. THC has extremely low volatility and is hypothesized to be carried in breath by aerosol particles formed from lung surfactant. Exhaled breath aerosols can be recovered from electrostatic filter devices, but consistent quantitative results across multiple studies have not been demonstrated. We used a simple-to-use impaction filter device to collect breath aerosols from participants before and after they smoked a legal market cannabis flower containing ∼25% Δ9-tetrahydrocannabinolic acid. Breath collection occurred at an intake session (baseline-intake) and four weeks later in a federally-compliant mobile laboratory 15 min before (baseline-experimental) and 1 h after cannabis use (post-use). Cannabis use was in the participant's residence. Participants were asked to follow a breathing maneuver designed to increase aerosol production. Breath extracts were analyzed by liquid chromatography with tandem mass spectrometry with multiple reaction monitoring of two transitions for analytes and their deuterated internal standards. Over more than 1 yr, 42 breath samples from 18 participants were collected and analyzed in six batches. THC was quantified in 31% of baseline-intake, 36% of baseline-experimental, and 80% of 1 h post-use breath extracts. The quantities observed 1 h post-use are compared to those reported in six other pilot studies that sampled breath at known intervals following cannabis use and are discussed with respect to participant characteristics and breath sampling protocols. Larger studies with verified abstinence and more post-use timepoints are necessary to generate statistically significant data to develop meaningful cannabis breathalyzer technology.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.