电子健康记录中检查点抑制剂诱导结肠炎病例的加速管理。

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES JAMIA Open Pub Date : 2023-04-01 DOI:10.1093/jamiaopen/ooad017
Protiva Rahman, Cheng Ye, Kathleen F Mittendorf, Michele Lenoue-Newton, Christine Micheel, Jan Wolber, Travis Osterman, Daniel Fabbri
{"title":"电子健康记录中检查点抑制剂诱导结肠炎病例的加速管理。","authors":"Protiva Rahman,&nbsp;Cheng Ye,&nbsp;Kathleen F Mittendorf,&nbsp;Michele Lenoue-Newton,&nbsp;Christine Micheel,&nbsp;Jan Wolber,&nbsp;Travis Osterman,&nbsp;Daniel Fabbri","doi":"10.1093/jamiaopen/ooad017","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Automatically identifying patients at risk of immune checkpoint inhibitor (ICI)-induced colitis allows physicians to improve patientcare. However, predictive models require training data curated from electronic health records (EHR). Our objective is to automatically identify notes documenting ICI-colitis cases to accelerate data curation.</p><p><strong>Materials and methods: </strong>We present a data pipeline to automatically identify ICI-colitis from EHR notes, accelerating chart review. The pipeline relies on BERT, a state-of-the-art natural language processing (NLP) model. The first stage of the pipeline segments long notes using keywords identified through a logistic classifier and applies BERT to identify ICI-colitis notes. The next stage uses a second BERT model tuned to identify false positive notes and remove notes that were likely positive for mentioning colitis as a side-effect. The final stage further accelerates curation by highlighting the colitis-relevant portions of notes. Specifically, we use BERT's attention scores to find high-density regions describing colitis.</p><p><strong>Results: </strong>The overall pipeline identified colitis notes with 84% precision and reduced the curator note review load by 75%. The segment BERT classifier had a high recall of 0.98, which is crucial to identify the low incidence (<10%) of colitis.</p><p><strong>Discussion: </strong>Curation from EHR notes is a burdensome task, especially when the curation topic is complicated. Methods described in this work are not only useful for ICI colitis but can also be adapted for other domains.</p><p><strong>Conclusion: </strong>Our extraction pipeline reduces manual note review load and makes EHR data more accessible for research.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4f/2b/ooad017.PMC10066800.pdf","citationCount":"0","resultStr":"{\"title\":\"Accelerated curation of checkpoint inhibitor-induced colitis cases from electronic health records.\",\"authors\":\"Protiva Rahman,&nbsp;Cheng Ye,&nbsp;Kathleen F Mittendorf,&nbsp;Michele Lenoue-Newton,&nbsp;Christine Micheel,&nbsp;Jan Wolber,&nbsp;Travis Osterman,&nbsp;Daniel Fabbri\",\"doi\":\"10.1093/jamiaopen/ooad017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Automatically identifying patients at risk of immune checkpoint inhibitor (ICI)-induced colitis allows physicians to improve patientcare. However, predictive models require training data curated from electronic health records (EHR). Our objective is to automatically identify notes documenting ICI-colitis cases to accelerate data curation.</p><p><strong>Materials and methods: </strong>We present a data pipeline to automatically identify ICI-colitis from EHR notes, accelerating chart review. The pipeline relies on BERT, a state-of-the-art natural language processing (NLP) model. The first stage of the pipeline segments long notes using keywords identified through a logistic classifier and applies BERT to identify ICI-colitis notes. The next stage uses a second BERT model tuned to identify false positive notes and remove notes that were likely positive for mentioning colitis as a side-effect. The final stage further accelerates curation by highlighting the colitis-relevant portions of notes. Specifically, we use BERT's attention scores to find high-density regions describing colitis.</p><p><strong>Results: </strong>The overall pipeline identified colitis notes with 84% precision and reduced the curator note review load by 75%. The segment BERT classifier had a high recall of 0.98, which is crucial to identify the low incidence (<10%) of colitis.</p><p><strong>Discussion: </strong>Curation from EHR notes is a burdensome task, especially when the curation topic is complicated. Methods described in this work are not only useful for ICI colitis but can also be adapted for other domains.</p><p><strong>Conclusion: </strong>Our extraction pipeline reduces manual note review load and makes EHR data more accessible for research.</p>\",\"PeriodicalId\":36278,\"journal\":{\"name\":\"JAMIA Open\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4f/2b/ooad017.PMC10066800.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAMIA Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jamiaopen/ooad017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooad017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的:自动识别有免疫检查点抑制剂(ICI)诱导结肠炎风险的患者,使医生能够改善患者护理。然而,预测模型需要来自电子健康记录(EHR)的培训数据。我们的目标是自动识别记录ici -结肠炎病例的笔记,以加速数据管理。材料和方法:我们提出了一个数据管道,从电子病历记录中自动识别ici -结肠炎,加速图表审查。该管道依赖于BERT,一种最先进的自然语言处理(NLP)模型。管道的第一阶段使用通过逻辑分类器识别的关键字分段长音符,并应用BERT识别ici -结肠炎音符。下一阶段使用第二个BERT模型来识别假阳性音符,并删除可能为提到结肠炎作为副作用而呈阳性的音符。最后一个阶段通过突出显示笔记中与结肠炎相关的部分来进一步加速整理。具体来说,我们使用BERT的注意力评分来找到描述结肠炎的高密度区域。结果:整个管道识别结肠炎笔记的准确率为84%,并将管理员笔记审查工作量减少了75%。片段BERT分类器具有0.98的高召回率,这对于识别低发生率至关重要(讨论:从EHR笔记中进行分类是一项繁重的任务,特别是当分类主题很复杂时。本工作中描述的方法不仅对ICI结肠炎有用,而且可以适用于其他领域。结论:我们的提取管道减少了人工笔记审查的工作量,使电子病历数据更易于研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerated curation of checkpoint inhibitor-induced colitis cases from electronic health records.

Objective: Automatically identifying patients at risk of immune checkpoint inhibitor (ICI)-induced colitis allows physicians to improve patientcare. However, predictive models require training data curated from electronic health records (EHR). Our objective is to automatically identify notes documenting ICI-colitis cases to accelerate data curation.

Materials and methods: We present a data pipeline to automatically identify ICI-colitis from EHR notes, accelerating chart review. The pipeline relies on BERT, a state-of-the-art natural language processing (NLP) model. The first stage of the pipeline segments long notes using keywords identified through a logistic classifier and applies BERT to identify ICI-colitis notes. The next stage uses a second BERT model tuned to identify false positive notes and remove notes that were likely positive for mentioning colitis as a side-effect. The final stage further accelerates curation by highlighting the colitis-relevant portions of notes. Specifically, we use BERT's attention scores to find high-density regions describing colitis.

Results: The overall pipeline identified colitis notes with 84% precision and reduced the curator note review load by 75%. The segment BERT classifier had a high recall of 0.98, which is crucial to identify the low incidence (<10%) of colitis.

Discussion: Curation from EHR notes is a burdensome task, especially when the curation topic is complicated. Methods described in this work are not only useful for ICI colitis but can also be adapted for other domains.

Conclusion: Our extraction pipeline reduces manual note review load and makes EHR data more accessible for research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
期刊最新文献
A landmark federal interagency collaboration to promote data science in health care: Million Veteran Program-Computational Health Analytics for Medical Precision to Improve Outcomes Now. Targetable molecular algorithm and training platform development for the treatment of non-small cell lung cancer. Sex, sexual orientation, and gender identity data collection across electronic health record platforms: a national cross-sectional survey. Assessing the use of unstructured electronic health record data to identify exposure to firearm violence. Developing personas to inform the design of digital interventions for perinatal mental health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1