Matthew J Valente, Judith J M Rijnhart, Oscar Gonzalez
{"title":"一种新的方法来估计调节治疗效果和持续调节因子的调节介导效果。","authors":"Matthew J Valente, Judith J M Rijnhart, Oscar Gonzalez","doi":"10.1037/met0000593","DOIUrl":null,"url":null,"abstract":"<p><p>Moderation analysis is used to study under what conditions or for which subgroups of individuals a treatment effect is stronger or weaker. When a moderator variable is categorical, such as assigned sex, treatment effects can be estimated for each group resulting in a treatment effect for males and a treatment effect for females. If a moderator variable is a continuous variable, a strategy for investigating moderated treatment effects is to estimate conditional effects (i.e., simple slopes) via the pick-a-point approach. When conditional effects are estimated using the pick-a-point approach, the conditional effects are often given the interpretation of \"the treatment effect for the subgroup of individuals….\" However, the interpretation of these conditional effects as <i>subgroup</i> effects is potentially misleading because conditional effects are interpreted at a specific value of the moderator variable (e.g., +1 <i>SD</i> above the mean). We describe a simple solution that resolves this problem using a simulation-based approach. We describe how to apply this simulation-based approach to estimate subgroup effects by defining subgroups using a <i>range of scores</i> on the continuous moderator variable. We apply this method to three empirical examples to demonstrate how to estimate subgroup effects for moderated treatment and moderated mediated effects when the moderator variable is a continuous variable. Finally, we provide researchers with both SAS and R code to implement this method for similar situations described in this paper. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713862/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel approach to estimate moderated treatment effects and moderated mediated effects with continuous moderators.\",\"authors\":\"Matthew J Valente, Judith J M Rijnhart, Oscar Gonzalez\",\"doi\":\"10.1037/met0000593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Moderation analysis is used to study under what conditions or for which subgroups of individuals a treatment effect is stronger or weaker. When a moderator variable is categorical, such as assigned sex, treatment effects can be estimated for each group resulting in a treatment effect for males and a treatment effect for females. If a moderator variable is a continuous variable, a strategy for investigating moderated treatment effects is to estimate conditional effects (i.e., simple slopes) via the pick-a-point approach. When conditional effects are estimated using the pick-a-point approach, the conditional effects are often given the interpretation of \\\"the treatment effect for the subgroup of individuals….\\\" However, the interpretation of these conditional effects as <i>subgroup</i> effects is potentially misleading because conditional effects are interpreted at a specific value of the moderator variable (e.g., +1 <i>SD</i> above the mean). We describe a simple solution that resolves this problem using a simulation-based approach. We describe how to apply this simulation-based approach to estimate subgroup effects by defining subgroups using a <i>range of scores</i> on the continuous moderator variable. We apply this method to three empirical examples to demonstrate how to estimate subgroup effects for moderated treatment and moderated mediated effects when the moderator variable is a continuous variable. Finally, we provide researchers with both SAS and R code to implement this method for similar situations described in this paper. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713862/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000593\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000593","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel approach to estimate moderated treatment effects and moderated mediated effects with continuous moderators.
Moderation analysis is used to study under what conditions or for which subgroups of individuals a treatment effect is stronger or weaker. When a moderator variable is categorical, such as assigned sex, treatment effects can be estimated for each group resulting in a treatment effect for males and a treatment effect for females. If a moderator variable is a continuous variable, a strategy for investigating moderated treatment effects is to estimate conditional effects (i.e., simple slopes) via the pick-a-point approach. When conditional effects are estimated using the pick-a-point approach, the conditional effects are often given the interpretation of "the treatment effect for the subgroup of individuals…." However, the interpretation of these conditional effects as subgroup effects is potentially misleading because conditional effects are interpreted at a specific value of the moderator variable (e.g., +1 SD above the mean). We describe a simple solution that resolves this problem using a simulation-based approach. We describe how to apply this simulation-based approach to estimate subgroup effects by defining subgroups using a range of scores on the continuous moderator variable. We apply this method to three empirical examples to demonstrate how to estimate subgroup effects for moderated treatment and moderated mediated effects when the moderator variable is a continuous variable. Finally, we provide researchers with both SAS and R code to implement this method for similar situations described in this paper. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.