Pauline Schmitt , Lisa Borkner , Seyed Davoud Jazayeri , Karen N McCarthy , Kingston HG Mills
{"title":"百日咳鼻用疫苗。","authors":"Pauline Schmitt , Lisa Borkner , Seyed Davoud Jazayeri , Karen N McCarthy , Kingston HG Mills","doi":"10.1016/j.coi.2023.102355","DOIUrl":null,"url":null,"abstract":"<div><p>Whooping cough, caused by <em>Bordetella pertussis,</em> is still a major cause of morbidity and mortality worldwide. Current acellular pertussis (aP) vaccines induce potent circulating IgG and prevent severe disease in children/adults and in infants born to vaccinated mothers. However, they do not prevent nasal infection, allowing asymptomatic transmission of <em>B. pertussis</em>. Studies in animal models have demonstrated that, unlike natural infection, immunization with aP vaccines fails to induce secretory immunoglobulin A (IgA) or interleukin-17 (IL-17)-secreting tissue-resident memory CD4 T (T<sub>RM</sub>) cells, required for sustained sterilizing immunity in the nasal mucosa. Live-attenuated vaccines or aP vaccines formulated with novel adjuvants that induce respiratory IgA and T<sub>RM</sub> cells, especially when delivered by the nasal route, are in development and have considerable promise as next-generation vaccines against pertussis.</p></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nasal vaccines for pertussis\",\"authors\":\"Pauline Schmitt , Lisa Borkner , Seyed Davoud Jazayeri , Karen N McCarthy , Kingston HG Mills\",\"doi\":\"10.1016/j.coi.2023.102355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Whooping cough, caused by <em>Bordetella pertussis,</em> is still a major cause of morbidity and mortality worldwide. Current acellular pertussis (aP) vaccines induce potent circulating IgG and prevent severe disease in children/adults and in infants born to vaccinated mothers. However, they do not prevent nasal infection, allowing asymptomatic transmission of <em>B. pertussis</em>. Studies in animal models have demonstrated that, unlike natural infection, immunization with aP vaccines fails to induce secretory immunoglobulin A (IgA) or interleukin-17 (IL-17)-secreting tissue-resident memory CD4 T (T<sub>RM</sub>) cells, required for sustained sterilizing immunity in the nasal mucosa. Live-attenuated vaccines or aP vaccines formulated with novel adjuvants that induce respiratory IgA and T<sub>RM</sub> cells, especially when delivered by the nasal route, are in development and have considerable promise as next-generation vaccines against pertussis.</p></div>\",\"PeriodicalId\":11361,\"journal\":{\"name\":\"Current Opinion in Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952791523000742\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952791523000742","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Whooping cough, caused by Bordetella pertussis, is still a major cause of morbidity and mortality worldwide. Current acellular pertussis (aP) vaccines induce potent circulating IgG and prevent severe disease in children/adults and in infants born to vaccinated mothers. However, they do not prevent nasal infection, allowing asymptomatic transmission of B. pertussis. Studies in animal models have demonstrated that, unlike natural infection, immunization with aP vaccines fails to induce secretory immunoglobulin A (IgA) or interleukin-17 (IL-17)-secreting tissue-resident memory CD4 T (TRM) cells, required for sustained sterilizing immunity in the nasal mucosa. Live-attenuated vaccines or aP vaccines formulated with novel adjuvants that induce respiratory IgA and TRM cells, especially when delivered by the nasal route, are in development and have considerable promise as next-generation vaccines against pertussis.
期刊介绍:
Current Opinion in Immunology aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Immunology we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
Current Opinion in Immunology will serve as an invaluable source of information for researchers, lecturers, teachers, professionals, policy makers and students.
Current Opinion in Immunology builds on Elsevier''s reputation for excellence in scientific publishing and long-standing commitment to communicating reproducible biomedical research targeted at improving human health. It is a companion to the new Gold Open Access journal Current Research in Immunology and is part of the Current Opinion and Research(CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists'' workflow.