{"title":"头盔鸠(Numida meleagris)的听力:2赫兹至10千赫兹的听力图和对短暂噪声脉冲的定位敏锐度。","authors":"Henry E Heffner, Gimseong Koay, Rickye S Heffner","doi":"10.1007/s00359-023-01645-7","DOIUrl":null,"url":null,"abstract":"<p><p>Behavioral hearing thresholds and noise localization acuity were determined using a conditioned avoidance/suppression procedure for three Helmeted guineafowl (Numida meleagris). The guineafowl responded to frequencies as low as 2 Hz at 82.5 dB SPL, and as high as 8 kHz at 84.5 dB SPL. At a level of 60 dB SPL, their hearing range spanned 8.12 octaves (24.6 Hz-6.86 kHz). Like most birds, they do not hear sounds above 8 kHz. However, the guineafowl demonstrated good low-frequency hearing (frequencies below 32 Hz), showing thresholds that are more sensitive than both the peafowl and pigeon, both of which hear infrasound. It thus appears that infrasound perception may be more common than previously thought and may have implications for species that inhabit areas with wind energy facilities. The guineafowls' minimum audible angle for a 100-ms broadband noise burst was 13.8 °, at the median for birds and near the mean for mammals. Unlike in mammals, the small sample of bird species and limited representation of lifestyles do not yet allow for meaningful interpretations of the selective pressures or mechanisms that underlie their abilities to locate sound sources.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hearing in helmeted guineafowl (Numida meleagris): audiogram from 2 Hz to 10 kHz and localization acuity for brief noise bursts.\",\"authors\":\"Henry E Heffner, Gimseong Koay, Rickye S Heffner\",\"doi\":\"10.1007/s00359-023-01645-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Behavioral hearing thresholds and noise localization acuity were determined using a conditioned avoidance/suppression procedure for three Helmeted guineafowl (Numida meleagris). The guineafowl responded to frequencies as low as 2 Hz at 82.5 dB SPL, and as high as 8 kHz at 84.5 dB SPL. At a level of 60 dB SPL, their hearing range spanned 8.12 octaves (24.6 Hz-6.86 kHz). Like most birds, they do not hear sounds above 8 kHz. However, the guineafowl demonstrated good low-frequency hearing (frequencies below 32 Hz), showing thresholds that are more sensitive than both the peafowl and pigeon, both of which hear infrasound. It thus appears that infrasound perception may be more common than previously thought and may have implications for species that inhabit areas with wind energy facilities. The guineafowls' minimum audible angle for a 100-ms broadband noise burst was 13.8 °, at the median for birds and near the mean for mammals. Unlike in mammals, the small sample of bird species and limited representation of lifestyles do not yet allow for meaningful interpretations of the selective pressures or mechanisms that underlie their abilities to locate sound sources.</p>\",\"PeriodicalId\":54862,\"journal\":{\"name\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s00359-023-01645-7\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-023-01645-7","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Hearing in helmeted guineafowl (Numida meleagris): audiogram from 2 Hz to 10 kHz and localization acuity for brief noise bursts.
Behavioral hearing thresholds and noise localization acuity were determined using a conditioned avoidance/suppression procedure for three Helmeted guineafowl (Numida meleagris). The guineafowl responded to frequencies as low as 2 Hz at 82.5 dB SPL, and as high as 8 kHz at 84.5 dB SPL. At a level of 60 dB SPL, their hearing range spanned 8.12 octaves (24.6 Hz-6.86 kHz). Like most birds, they do not hear sounds above 8 kHz. However, the guineafowl demonstrated good low-frequency hearing (frequencies below 32 Hz), showing thresholds that are more sensitive than both the peafowl and pigeon, both of which hear infrasound. It thus appears that infrasound perception may be more common than previously thought and may have implications for species that inhabit areas with wind energy facilities. The guineafowls' minimum audible angle for a 100-ms broadband noise burst was 13.8 °, at the median for birds and near the mean for mammals. Unlike in mammals, the small sample of bird species and limited representation of lifestyles do not yet allow for meaningful interpretations of the selective pressures or mechanisms that underlie their abilities to locate sound sources.
期刊介绍:
The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields:
- Neurobiology and neuroethology
- Sensory physiology and ecology
- Physiological and hormonal basis of behavior
- Communication, orientation, and locomotion
- Functional imaging and neuroanatomy
Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular.
Colour figures are free in print and online.