消除 TRA-1-60+/TRA-1-81+ 化疗耐药癌细胞的靶向途径。

IF 5.3 2区 生物学 Q2 CELL BIOLOGY Journal of Molecular Cell Biology Pub Date : 2023-11-27 DOI:10.1093/jmcb/mjad039
Lei Tan, Xiaohua Duan, Pratyusha Mutyala, Ting Zhou, Sadaf Amin, Tuo Zhang, Brian Herbst, Gokce Askan, Tomer Itkin, Zhaoying Xiang, Fabrizio Michelassi, Michael D Lieberman, Christine A Iacobuzio-Donahue, Steven D Leach, Todd Evans, Shuibing Chen
{"title":"消除 TRA-1-60+/TRA-1-81+ 化疗耐药癌细胞的靶向途径。","authors":"Lei Tan, Xiaohua Duan, Pratyusha Mutyala, Ting Zhou, Sadaf Amin, Tuo Zhang, Brian Herbst, Gokce Askan, Tomer Itkin, Zhaoying Xiang, Fabrizio Michelassi, Michael D Lieberman, Christine A Iacobuzio-Donahue, Steven D Leach, Todd Evans, Shuibing Chen","doi":"10.1093/jmcb/mjad039","DOIUrl":null,"url":null,"abstract":"<p><p>Chemoresistance is a primary cause of treatment failure in pancreatic cancer. Identifying cell surface markers specifically expressed in chemoresistant cancer cells (CCCs) could facilitate targeted therapies to overcome chemoresistance. We performed an antibody-based screen and found that TRA-1-60 and TRA-1-81, two 'stemness' cell surface markers, are highly enriched in CCCs. Furthermore, TRA-1-60+/TRA-1-81+ cells are chemoresistant compared to TRA-1-60-/TRA-1-81- cells. Transcriptome profiling identified UGT1A10, shown to be both necessary and sufficient to maintain TRA-1-60/TRA-1-81 expression and chemoresistance. From a high-content chemical screen, we identified Cymarin, which downregulates UGT1A10, eliminates TRA-1-60/TRA-1-81 expression, and increases chemosensitivity both in vitro and in vivo. Finally, TRA-1-60/TRA-1-81 expression is highly specific in primary cancer tissue and positively correlated with chemoresistance and short survival, which highlights their potentiality for targeted therapy. Therefore, we discovered a novel CCC surface marker regulated by a pathway that promotes chemoresistance, as well as a leading drug candidate to target this pathway.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847630/pdf/","citationCount":"0","resultStr":"{\"title\":\"A targetable pathway to eliminate TRA-1-60+/TRA-1-81+ chemoresistant cancer cells.\",\"authors\":\"Lei Tan, Xiaohua Duan, Pratyusha Mutyala, Ting Zhou, Sadaf Amin, Tuo Zhang, Brian Herbst, Gokce Askan, Tomer Itkin, Zhaoying Xiang, Fabrizio Michelassi, Michael D Lieberman, Christine A Iacobuzio-Donahue, Steven D Leach, Todd Evans, Shuibing Chen\",\"doi\":\"10.1093/jmcb/mjad039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemoresistance is a primary cause of treatment failure in pancreatic cancer. Identifying cell surface markers specifically expressed in chemoresistant cancer cells (CCCs) could facilitate targeted therapies to overcome chemoresistance. We performed an antibody-based screen and found that TRA-1-60 and TRA-1-81, two 'stemness' cell surface markers, are highly enriched in CCCs. Furthermore, TRA-1-60+/TRA-1-81+ cells are chemoresistant compared to TRA-1-60-/TRA-1-81- cells. Transcriptome profiling identified UGT1A10, shown to be both necessary and sufficient to maintain TRA-1-60/TRA-1-81 expression and chemoresistance. From a high-content chemical screen, we identified Cymarin, which downregulates UGT1A10, eliminates TRA-1-60/TRA-1-81 expression, and increases chemosensitivity both in vitro and in vivo. Finally, TRA-1-60/TRA-1-81 expression is highly specific in primary cancer tissue and positively correlated with chemoresistance and short survival, which highlights their potentiality for targeted therapy. Therefore, we discovered a novel CCC surface marker regulated by a pathway that promotes chemoresistance, as well as a leading drug candidate to target this pathway.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjad039\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjad039","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

化疗耐药性是胰腺癌治疗失败的主要原因。识别化疗耐药癌细胞(CCC)中特异表达的细胞表面标志物有助于采用靶向疗法克服化疗耐药性。我们进行了基于抗体的筛选,发现TRA-1-60和TRA-1-81这两种 "干性 "细胞表面标志物在CCC中高度富集。此外,与 TRA-1-60-/TRA-1-81- 细胞相比,TRA-1-60+/TRA-1-81+ 细胞具有化疗抗性。转录组分析发现了 UGT1A10,证明它是维持 TRA-1-60/TRA-1-81 表达和化疗抗性的必要和充分条件。通过高含量化学筛选,我们发现了香豆素,它能下调 UGT1A10,消除 TRA-1-60/TRA-1-81 的表达,并增加体外和体内的化疗敏感性。最后,TRA-1-60/TRA-1-81 在原发性癌症组织中的表达具有高度特异性,并与化疗耐药性和生存期短呈正相关,这凸显了它们在靶向治疗中的潜力。因此,我们发现了一种受促进化疗耐药性途径调控的新型 CCC 表面标记物,以及一种靶向该途径的主要候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A targetable pathway to eliminate TRA-1-60+/TRA-1-81+ chemoresistant cancer cells.

Chemoresistance is a primary cause of treatment failure in pancreatic cancer. Identifying cell surface markers specifically expressed in chemoresistant cancer cells (CCCs) could facilitate targeted therapies to overcome chemoresistance. We performed an antibody-based screen and found that TRA-1-60 and TRA-1-81, two 'stemness' cell surface markers, are highly enriched in CCCs. Furthermore, TRA-1-60+/TRA-1-81+ cells are chemoresistant compared to TRA-1-60-/TRA-1-81- cells. Transcriptome profiling identified UGT1A10, shown to be both necessary and sufficient to maintain TRA-1-60/TRA-1-81 expression and chemoresistance. From a high-content chemical screen, we identified Cymarin, which downregulates UGT1A10, eliminates TRA-1-60/TRA-1-81 expression, and increases chemosensitivity both in vitro and in vivo. Finally, TRA-1-60/TRA-1-81 expression is highly specific in primary cancer tissue and positively correlated with chemoresistance and short survival, which highlights their potentiality for targeted therapy. Therefore, we discovered a novel CCC surface marker regulated by a pathway that promotes chemoresistance, as well as a leading drug candidate to target this pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
期刊最新文献
Blockade of TNF-α/TNFR2 signalling suppresses colorectal cancer and enhances the efficacy of anti-PD1 immunotherapy by decreasing CCR8+T regulatory cells. Unleashing the power of antigen-presenting neutrophils. Molecular insights into AGS3's role in spindle orientation: a biochemical perspective. Increased serum β-hydroxybutyrate/acetoacetate ratio and aggravated histological liver inflammation in females with metabolic dysfunction-associated steatotic liver disease and polycystic ovary syndrome. Structure-specific nucleases in genome dynamics and strategies for targeting cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1