纯化DNA寡核苷酸以提高杂交链反应性能

IF 4.5 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS New biotechnology Pub Date : 2023-09-25 DOI:10.1016/j.nbt.2023.04.004
Mattias Leino, Ola Söderberg
{"title":"纯化DNA寡核苷酸以提高杂交链反应性能","authors":"Mattias Leino,&nbsp;Ola Söderberg","doi":"10.1016/j.nbt.2023.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Hybridization Chain Reaction (HCR) is a technique to generate a linear polymerization of oligonucleotide hairpins, used in multiple molecular biology methods. The HCR reaction is dependent on every hairpin being metastable in the absence of a triggering oligonucleotide and that every hairpin can continue the polymerization, which puts a strong demand on oligonucleotide quality. We show how further purification can greatly increase polymerization potential. It was found that a single extra PAGE-purification could greatly enhance hairpin polymerization both <em>in solution</em> and <em>in situ</em>. Purification using a ligation-based method further improved polymerization, yielding <em>in situ</em> immunoHCR stains at least 3.4-times stronger than a non-purified control. This demonstrates the importance of not only good sequence design of the oligonucleotide hairpins, but also the demand for high quality oligonucleotides to accomplish a potent and specific HCR.</p></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purification of DNA oligonucleotides to improve hybridization chain reaction performance\",\"authors\":\"Mattias Leino,&nbsp;Ola Söderberg\",\"doi\":\"10.1016/j.nbt.2023.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hybridization Chain Reaction (HCR) is a technique to generate a linear polymerization of oligonucleotide hairpins, used in multiple molecular biology methods. The HCR reaction is dependent on every hairpin being metastable in the absence of a triggering oligonucleotide and that every hairpin can continue the polymerization, which puts a strong demand on oligonucleotide quality. We show how further purification can greatly increase polymerization potential. It was found that a single extra PAGE-purification could greatly enhance hairpin polymerization both <em>in solution</em> and <em>in situ</em>. Purification using a ligation-based method further improved polymerization, yielding <em>in situ</em> immunoHCR stains at least 3.4-times stronger than a non-purified control. This demonstrates the importance of not only good sequence design of the oligonucleotide hairpins, but also the demand for high quality oligonucleotides to accomplish a potent and specific HCR.</p></div>\",\"PeriodicalId\":19190,\"journal\":{\"name\":\"New biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1871678423000195\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871678423000195","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

杂交链式反应(HCR)是一种产生寡核苷酸发夹线性聚合的技术,用于多种分子生物学方法。HCR反应取决于每个发夹在没有触发寡核苷酸的情况下是可转移的,并且每个发夹都可以继续聚合,这对寡核苷酸的质量提出了强烈的要求。我们展示了进一步纯化可以极大地提高聚合潜力。研究发现,一次额外的PAGE纯化可以大大增强溶液和原位的发夹聚合。使用基于连接的方法纯化进一步改进了聚合,产生的原位免疫HCR染色比未纯化的对照强至少3.4倍。这证明了不仅寡核苷酸发夹的良好序列设计的重要性,而且需要高质量的寡核苷酸来实现有效和特异的HCR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Purification of DNA oligonucleotides to improve hybridization chain reaction performance

Hybridization Chain Reaction (HCR) is a technique to generate a linear polymerization of oligonucleotide hairpins, used in multiple molecular biology methods. The HCR reaction is dependent on every hairpin being metastable in the absence of a triggering oligonucleotide and that every hairpin can continue the polymerization, which puts a strong demand on oligonucleotide quality. We show how further purification can greatly increase polymerization potential. It was found that a single extra PAGE-purification could greatly enhance hairpin polymerization both in solution and in situ. Purification using a ligation-based method further improved polymerization, yielding in situ immunoHCR stains at least 3.4-times stronger than a non-purified control. This demonstrates the importance of not only good sequence design of the oligonucleotide hairpins, but also the demand for high quality oligonucleotides to accomplish a potent and specific HCR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New biotechnology
New biotechnology 生物-生化研究方法
CiteScore
11.40
自引率
1.90%
发文量
77
审稿时长
1 months
期刊介绍: New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international. The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.
期刊最新文献
Beyond Viability: Advancing CHO Cell Culture Process Strategies to modulate Host Cell Protein levels. Elevated CO2 enhances growth and cyanide assimilation in nitrogen-deficient rice: A transcriptome and metabolomic perspective Knock-out of the major regulator Flo8 in Komagataella phaffii results in unique host strain performance for methanol-free recombinant protein production Impact of hydromechanical stress on CHO cells’ metabolism and productivity: Insights from shake flask cultivations with online monitoring of the respiration activity Assessing the potential of olive mill solid waste as feedstock for methane and volatile fatty acids production via anaerobic bioprocesses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1