Robert J Woods, Camilo Barbosa, Laura Koepping, Juan A Raygoza, Michael Mwangi, Andrew F Read
{"title":"抗生素耐药性在无法治愈和最终致命感染中的演变:回顾性病例研究。","authors":"Robert J Woods, Camilo Barbosa, Laura Koepping, Juan A Raygoza, Michael Mwangi, Andrew F Read","doi":"10.1093/emph/eoad012","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>The processes by which pathogens evolve within a host dictate the efficacy of treatment strategies designed to slow antibiotic resistance evolution and influence population-wide resistance levels. The aim of this study is to describe the underlying genetic and phenotypic changes leading to antibiotic resistance within a patient who died as resistance evolved to available antibiotics. We assess whether robust patterns of collateral sensitivity and response to combinations existed that might have been leveraged to improve therapy.</p><p><strong>Methodology: </strong>We used whole-genome sequencing of nine isolates taken from this patient over 279 days of a chronic infection with <i>Enterobacter hormaechei</i>, and systematically measured changes in resistance against five of the most relevant drugs considered for treatment.</p><p><strong>Results: </strong>The entirety of the genetic change is consistent with <i>de novo</i> mutations and plasmid loss events, without acquisition of foreign genetic material via horizontal gene transfer. The nine isolates fall into three genetically distinct lineages, with early evolutionary trajectories being supplanted by previously unobserved multi-step evolutionary trajectories. Importantly, although the population evolved resistance to all the antibiotics used to treat the infection, no single isolate was resistant to all antibiotics. Evidence of collateral sensitivity and response to combinations therapy revealed inconsistent patterns across this diversifying population.</p><p><strong>Conclusions: </strong>Translating antibiotic resistance management strategies from theoretical and laboratory data to clinical situations, such as this, will require managing diverse population with unpredictable resistance trajectories.</p>","PeriodicalId":12156,"journal":{"name":"Evolution, Medicine, and Public Health","volume":"11 1","pages":"163-173"},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266578/pdf/","citationCount":"0","resultStr":"{\"title\":\"The evolution of antibiotic resistance in an incurable and ultimately fatal infection: A retrospective case study.\",\"authors\":\"Robert J Woods, Camilo Barbosa, Laura Koepping, Juan A Raygoza, Michael Mwangi, Andrew F Read\",\"doi\":\"10.1093/emph/eoad012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objectives: </strong>The processes by which pathogens evolve within a host dictate the efficacy of treatment strategies designed to slow antibiotic resistance evolution and influence population-wide resistance levels. The aim of this study is to describe the underlying genetic and phenotypic changes leading to antibiotic resistance within a patient who died as resistance evolved to available antibiotics. We assess whether robust patterns of collateral sensitivity and response to combinations existed that might have been leveraged to improve therapy.</p><p><strong>Methodology: </strong>We used whole-genome sequencing of nine isolates taken from this patient over 279 days of a chronic infection with <i>Enterobacter hormaechei</i>, and systematically measured changes in resistance against five of the most relevant drugs considered for treatment.</p><p><strong>Results: </strong>The entirety of the genetic change is consistent with <i>de novo</i> mutations and plasmid loss events, without acquisition of foreign genetic material via horizontal gene transfer. The nine isolates fall into three genetically distinct lineages, with early evolutionary trajectories being supplanted by previously unobserved multi-step evolutionary trajectories. Importantly, although the population evolved resistance to all the antibiotics used to treat the infection, no single isolate was resistant to all antibiotics. Evidence of collateral sensitivity and response to combinations therapy revealed inconsistent patterns across this diversifying population.</p><p><strong>Conclusions: </strong>Translating antibiotic resistance management strategies from theoretical and laboratory data to clinical situations, such as this, will require managing diverse population with unpredictable resistance trajectories.</p>\",\"PeriodicalId\":12156,\"journal\":{\"name\":\"Evolution, Medicine, and Public Health\",\"volume\":\"11 1\",\"pages\":\"163-173\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266578/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution, Medicine, and Public Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/emph/eoad012\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution, Medicine, and Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/emph/eoad012","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
The evolution of antibiotic resistance in an incurable and ultimately fatal infection: A retrospective case study.
Background and objectives: The processes by which pathogens evolve within a host dictate the efficacy of treatment strategies designed to slow antibiotic resistance evolution and influence population-wide resistance levels. The aim of this study is to describe the underlying genetic and phenotypic changes leading to antibiotic resistance within a patient who died as resistance evolved to available antibiotics. We assess whether robust patterns of collateral sensitivity and response to combinations existed that might have been leveraged to improve therapy.
Methodology: We used whole-genome sequencing of nine isolates taken from this patient over 279 days of a chronic infection with Enterobacter hormaechei, and systematically measured changes in resistance against five of the most relevant drugs considered for treatment.
Results: The entirety of the genetic change is consistent with de novo mutations and plasmid loss events, without acquisition of foreign genetic material via horizontal gene transfer. The nine isolates fall into three genetically distinct lineages, with early evolutionary trajectories being supplanted by previously unobserved multi-step evolutionary trajectories. Importantly, although the population evolved resistance to all the antibiotics used to treat the infection, no single isolate was resistant to all antibiotics. Evidence of collateral sensitivity and response to combinations therapy revealed inconsistent patterns across this diversifying population.
Conclusions: Translating antibiotic resistance management strategies from theoretical and laboratory data to clinical situations, such as this, will require managing diverse population with unpredictable resistance trajectories.
期刊介绍:
About the Journal
Founded by Stephen Stearns in 2013, Evolution, Medicine, and Public Health is an open access journal that publishes original, rigorous applications of evolutionary science to issues in medicine and public health. It aims to connect evolutionary biology with the health sciences to produce insights that may reduce suffering and save lives. Because evolutionary biology is a basic science that reaches across many disciplines, this journal is open to contributions on a broad range of topics.