{"title":"单细胞分辨率的癌症特征蛋白质组学挖掘。","authors":"Maomao Li, Jing Zuo, Kailin Yang, Ping Wang, Shengtao Zhou","doi":"10.1002/mas.21842","DOIUrl":null,"url":null,"abstract":"<p>Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 5","pages":"1019-1040"},"PeriodicalIF":6.9000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteomics mining of cancer hallmarks on a single-cell resolution\",\"authors\":\"Maomao Li, Jing Zuo, Kailin Yang, Ping Wang, Shengtao Zhou\",\"doi\":\"10.1002/mas.21842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.</p>\",\"PeriodicalId\":206,\"journal\":{\"name\":\"Mass Spectrometry Reviews\",\"volume\":\"43 5\",\"pages\":\"1019-1040\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass Spectrometry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mas.21842\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass Spectrometry Reviews","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mas.21842","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Proteomics mining of cancer hallmarks on a single-cell resolution
Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.
期刊介绍:
The aim of the journal Mass Spectrometry Reviews is to publish well-written reviews in selected topics in the various sub-fields of mass spectrometry as a means to summarize the research that has been performed in that area, to focus attention of other researchers, to critically review the published material, and to stimulate further research in that area.
The scope of the published reviews include, but are not limited to topics, such as theoretical treatments, instrumental design, ionization methods, analyzers, detectors, application to the qualitative and quantitative analysis of various compounds or elements, basic ion chemistry and structure studies, ion energetic studies, and studies on biomolecules, polymers, etc.