利用反相高效液相色谱法对富粘蛋白样品中微生物来源的有机酸进行高通量定量分析。

IF 2.4 4区 医学 Q3 MICROBIOLOGY Journal of medical microbiology Pub Date : 2023-06-01 DOI:10.1099/jmm.0.001708
Alex R Villarreal, Sarah K Lucas, Joshua R Fletcher, Ryan C Hunter
{"title":"利用反相高效液相色谱法对富粘蛋白样品中微生物来源的有机酸进行高通量定量分析。","authors":"Alex R Villarreal,&nbsp;Sarah K Lucas,&nbsp;Joshua R Fletcher,&nbsp;Ryan C Hunter","doi":"10.1099/jmm.0.001708","DOIUrl":null,"url":null,"abstract":"<p><p>Organic acids (short chain fatty acids, amino acids, etc.) are common metabolic byproducts of commensal bacteria of the gut and oral cavity in addition to microbiota associated with chronic infections of the airways, skin, and soft tissues. A ubiquitous characteristic of these body sites in which mucus-rich secretions often accumulate in excess, is the presence of mucins; high molecular weight (HMW), glycosylated proteins that decorate the surfaces of non-keratinized epithelia. Owing to their size, mucins complicate quantification of microbial-derived metabolites as these large glycoproteins preclude use of 1D and 2D gel approaches and can obstruct analytical chromatography columns. Standard approaches for quantification of organic acids in mucin-rich samples typically rely on laborious extractions or outsourcing to laboratories specializing in targeted metabolomics. Here we report a high-throughput sample preparation process that reduces mucin abundance and an accompanying isocratic reverse phase high performance liquid chromatography (HPLC) method that enables quantification of microbial-derived organic acids. This approach allows for accurate quantification of compounds of interest (0.01 mM - 100 mM) with minimal sample preparation, a moderate HPLC method run time, and preservation of both guard and analytical column integrity. This approach paves the way for further analyses of microbial-derived metabolites in complex clinical samples.</p>","PeriodicalId":16343,"journal":{"name":"Journal of medical microbiology","volume":"72 6","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput quantification of microbial-derived organic acids in mucin-rich samples via reverse phase high performance liquid chromatography.\",\"authors\":\"Alex R Villarreal,&nbsp;Sarah K Lucas,&nbsp;Joshua R Fletcher,&nbsp;Ryan C Hunter\",\"doi\":\"10.1099/jmm.0.001708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organic acids (short chain fatty acids, amino acids, etc.) are common metabolic byproducts of commensal bacteria of the gut and oral cavity in addition to microbiota associated with chronic infections of the airways, skin, and soft tissues. A ubiquitous characteristic of these body sites in which mucus-rich secretions often accumulate in excess, is the presence of mucins; high molecular weight (HMW), glycosylated proteins that decorate the surfaces of non-keratinized epithelia. Owing to their size, mucins complicate quantification of microbial-derived metabolites as these large glycoproteins preclude use of 1D and 2D gel approaches and can obstruct analytical chromatography columns. Standard approaches for quantification of organic acids in mucin-rich samples typically rely on laborious extractions or outsourcing to laboratories specializing in targeted metabolomics. Here we report a high-throughput sample preparation process that reduces mucin abundance and an accompanying isocratic reverse phase high performance liquid chromatography (HPLC) method that enables quantification of microbial-derived organic acids. This approach allows for accurate quantification of compounds of interest (0.01 mM - 100 mM) with minimal sample preparation, a moderate HPLC method run time, and preservation of both guard and analytical column integrity. This approach paves the way for further analyses of microbial-derived metabolites in complex clinical samples.</p>\",\"PeriodicalId\":16343,\"journal\":{\"name\":\"Journal of medical microbiology\",\"volume\":\"72 6\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of medical microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1099/jmm.0.001708\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jmm.0.001708","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

有机酸(短链脂肪酸、氨基酸等)是肠道和口腔共生菌的常见代谢副产物,也是与呼吸道、皮肤和软组织慢性感染相关的微生物群。这些富含黏液的分泌物经常过量积聚的身体部位的一个普遍特征是黏液蛋白的存在;高分子量(HMW),糖化蛋白,修饰非角化上皮表面。由于其大小,粘蛋白使微生物衍生代谢物的定量复杂化,因为这些大糖蛋白妨碍了1D和2D凝胶方法的使用,并可能阻碍分析色谱柱。富黏液样品中有机酸定量的标准方法通常依赖于费力的提取或外包给专门从事目标代谢组学的实验室。在这里,我们报告了一种高通量样品制备工艺,减少粘蛋白丰度和伴随的等温反相高效液相色谱(HPLC)方法,可以定量测定微生物衍生的有机酸。该方法可以精确定量感兴趣的化合物(0.01 mM - 100 mM),只需最少的样品制备,适度的HPLC方法运行时间,并保持防护柱和分析柱的完整性。这种方法为进一步分析复杂临床样品中微生物衍生代谢物铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-throughput quantification of microbial-derived organic acids in mucin-rich samples via reverse phase high performance liquid chromatography.

Organic acids (short chain fatty acids, amino acids, etc.) are common metabolic byproducts of commensal bacteria of the gut and oral cavity in addition to microbiota associated with chronic infections of the airways, skin, and soft tissues. A ubiquitous characteristic of these body sites in which mucus-rich secretions often accumulate in excess, is the presence of mucins; high molecular weight (HMW), glycosylated proteins that decorate the surfaces of non-keratinized epithelia. Owing to their size, mucins complicate quantification of microbial-derived metabolites as these large glycoproteins preclude use of 1D and 2D gel approaches and can obstruct analytical chromatography columns. Standard approaches for quantification of organic acids in mucin-rich samples typically rely on laborious extractions or outsourcing to laboratories specializing in targeted metabolomics. Here we report a high-throughput sample preparation process that reduces mucin abundance and an accompanying isocratic reverse phase high performance liquid chromatography (HPLC) method that enables quantification of microbial-derived organic acids. This approach allows for accurate quantification of compounds of interest (0.01 mM - 100 mM) with minimal sample preparation, a moderate HPLC method run time, and preservation of both guard and analytical column integrity. This approach paves the way for further analyses of microbial-derived metabolites in complex clinical samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of medical microbiology
Journal of medical microbiology 医学-微生物学
CiteScore
5.50
自引率
3.30%
发文量
143
审稿时长
4.5 months
期刊介绍: Journal of Medical Microbiology provides comprehensive coverage of medical, dental and veterinary microbiology, and infectious diseases. We welcome everything from laboratory research to clinical trials, including bacteriology, virology, mycology and parasitology. We publish articles under the following subject categories: Antimicrobial resistance; Clinical microbiology; Disease, diagnosis and diagnostics; Medical mycology; Molecular and microbial epidemiology; Microbiome and microbial ecology in health; One Health; Pathogenesis, virulence and host response; Prevention, therapy and therapeutics
期刊最新文献
Polymyxin combined with Ocimum gratissimum essential oil: one alternative strategy for combating polymyxin-resistant Klebsiella pneumoniae The impact of agar depth on antimicrobial susceptibility testing by disc diffusion Antimicrobial spectrum against wound pathogens and cytotoxicity of star-arranged poly-l-lysine-based antimicrobial peptide polymers Gut microbiota plays a significant role in gout Klebsiella pneumoniae sequence type 147: a high-risk clone increasingly associated with plasmids carrying both resistance and virulence elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1