Lorena Emanuelli, Raffaele De Biasi, Huijuan Fu, Anton du Plessis, Carlo Lora, Alireza Jam, Matteo Benedetti, Massimo Pellizzari
{"title":"激光粉末床熔合制备孔隙度梯度β-Ti21S三周期最小表面胞状结构的计量表征。","authors":"Lorena Emanuelli, Raffaele De Biasi, Huijuan Fu, Anton du Plessis, Carlo Lora, Alireza Jam, Matteo Benedetti, Massimo Pellizzari","doi":"10.18063/ijb.729","DOIUrl":null,"url":null,"abstract":"<p><p>The design of a functionally graded porous structure (FGPS) for use in prosthetic devices is crucial for meeting both mechanical and biological requirements. One of the most commonly used cellular structures in FGPS is the triply periodic minimal surface (TPMS) structure due to its ability to be defined by implicit equations, which allows for smooth transitions between layers. This study evaluates the feasibility of using a novel β-Ti21S alloy to fabricate TPMS-based FGPS. This beta titanium alloy exhibits low elastic modulus (53 GPa) and good mechanical properties in as-built condition. Two TPMS FGPSs with relative density gradients of 0.17, 0.34, 0.50, 0.66, and 0.83 and unit cell sizes of 2.5 mm and 4 mm were designed and fabricated using laser powder bed fusion (LPBF). The as-manufactured structures were analyzed using scanning electron microscopy (SEM) and X-ray micro-computed tomography (μ-CT), and the results were compared to the design. The analysis revealed that the pore size and ligament thickness were undersized by less than 5%. Compression tests showed that the stabilized elastic modulus was 4.1 GPa for the TPMS with a 2.5 mm unit cell size and 10.7 GPa for the TPMS with a 4 mm unit cell size. A finite element simulation was performed to predict the specimen's elastic properties, and a lumped model based on lattice homogenized properties was proposed and its limitations were explored.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 4","pages":"729"},"PeriodicalIF":6.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/18/8c/IJB-9-4-729.PMC10272211.pdf","citationCount":"1","resultStr":"{\"title\":\"Metrological characterization of porosity graded β-Ti21S triply periodic minimal surface cellular structure manufactured by laser powder bed fusion.\",\"authors\":\"Lorena Emanuelli, Raffaele De Biasi, Huijuan Fu, Anton du Plessis, Carlo Lora, Alireza Jam, Matteo Benedetti, Massimo Pellizzari\",\"doi\":\"10.18063/ijb.729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The design of a functionally graded porous structure (FGPS) for use in prosthetic devices is crucial for meeting both mechanical and biological requirements. One of the most commonly used cellular structures in FGPS is the triply periodic minimal surface (TPMS) structure due to its ability to be defined by implicit equations, which allows for smooth transitions between layers. This study evaluates the feasibility of using a novel β-Ti21S alloy to fabricate TPMS-based FGPS. This beta titanium alloy exhibits low elastic modulus (53 GPa) and good mechanical properties in as-built condition. Two TPMS FGPSs with relative density gradients of 0.17, 0.34, 0.50, 0.66, and 0.83 and unit cell sizes of 2.5 mm and 4 mm were designed and fabricated using laser powder bed fusion (LPBF). The as-manufactured structures were analyzed using scanning electron microscopy (SEM) and X-ray micro-computed tomography (μ-CT), and the results were compared to the design. The analysis revealed that the pore size and ligament thickness were undersized by less than 5%. Compression tests showed that the stabilized elastic modulus was 4.1 GPa for the TPMS with a 2.5 mm unit cell size and 10.7 GPa for the TPMS with a 4 mm unit cell size. A finite element simulation was performed to predict the specimen's elastic properties, and a lumped model based on lattice homogenized properties was proposed and its limitations were explored.</p>\",\"PeriodicalId\":48522,\"journal\":{\"name\":\"International Journal of Bioprinting\",\"volume\":\"9 4\",\"pages\":\"729\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/18/8c/IJB-9-4-729.PMC10272211.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioprinting\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.18063/ijb.729\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18063/ijb.729","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Metrological characterization of porosity graded β-Ti21S triply periodic minimal surface cellular structure manufactured by laser powder bed fusion.
The design of a functionally graded porous structure (FGPS) for use in prosthetic devices is crucial for meeting both mechanical and biological requirements. One of the most commonly used cellular structures in FGPS is the triply periodic minimal surface (TPMS) structure due to its ability to be defined by implicit equations, which allows for smooth transitions between layers. This study evaluates the feasibility of using a novel β-Ti21S alloy to fabricate TPMS-based FGPS. This beta titanium alloy exhibits low elastic modulus (53 GPa) and good mechanical properties in as-built condition. Two TPMS FGPSs with relative density gradients of 0.17, 0.34, 0.50, 0.66, and 0.83 and unit cell sizes of 2.5 mm and 4 mm were designed and fabricated using laser powder bed fusion (LPBF). The as-manufactured structures were analyzed using scanning electron microscopy (SEM) and X-ray micro-computed tomography (μ-CT), and the results were compared to the design. The analysis revealed that the pore size and ligament thickness were undersized by less than 5%. Compression tests showed that the stabilized elastic modulus was 4.1 GPa for the TPMS with a 2.5 mm unit cell size and 10.7 GPa for the TPMS with a 4 mm unit cell size. A finite element simulation was performed to predict the specimen's elastic properties, and a lumped model based on lattice homogenized properties was proposed and its limitations were explored.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.