Suchita P Nety, Han Altae-Tran, Soumya Kannan, F Esra Demircioglu, Guilhem Faure, Seiichi Hirano, Kepler Mears, Yugang Zhang, Rhiannon K Macrae, Feng Zhang
{"title":"转座子编码的蛋白质TnpB将其自身的mRNA加工成ωRNA用于引导核酸酶活性。","authors":"Suchita P Nety, Han Altae-Tran, Soumya Kannan, F Esra Demircioglu, Guilhem Faure, Seiichi Hirano, Kepler Mears, Yugang Zhang, Rhiannon K Macrae, Feng Zhang","doi":"10.1089/crispr.2023.0015","DOIUrl":null,"url":null,"abstract":"<p><p>TnpB is a member of the Obligate Mobile Element Guided Activity (OMEGA) RNA-guided nuclease family, is harbored in transposons, and likely functions to maintain the transposon in genomes. Previously, it was shown that TnpB cleaves double- and single-stranded DNA substrates in an RNA-guided manner, but the biogenesis of the TnpB ribonucleoprotein (RNP) complex is unknown. Using <i>in vitro</i> purified apo TnpB, we demonstrate the ability of TnpB to generate guide omegaRNA (ωRNA) from its own mRNA through 5' processing. We also uncover a potential <i>cis</i>-regulatory mechanism whereby a region of the TnpB mRNA inhibits DNA cleavage by the RNP complex. We further expand the characterization of TnpB by examining ωRNA processing and RNA-guided nuclease activity in 59 orthologs spanning the natural diversity of the TnpB family. This work reveals a new functionality, ωRNA biogenesis, of TnpB, and characterizes additional members of this biotechnologically useful family of programmable enzymes.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"232-242"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278001/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Transposon-Encoded Protein TnpB Processes Its Own mRNA into ωRNA for Guided Nuclease Activity.\",\"authors\":\"Suchita P Nety, Han Altae-Tran, Soumya Kannan, F Esra Demircioglu, Guilhem Faure, Seiichi Hirano, Kepler Mears, Yugang Zhang, Rhiannon K Macrae, Feng Zhang\",\"doi\":\"10.1089/crispr.2023.0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>TnpB is a member of the Obligate Mobile Element Guided Activity (OMEGA) RNA-guided nuclease family, is harbored in transposons, and likely functions to maintain the transposon in genomes. Previously, it was shown that TnpB cleaves double- and single-stranded DNA substrates in an RNA-guided manner, but the biogenesis of the TnpB ribonucleoprotein (RNP) complex is unknown. Using <i>in vitro</i> purified apo TnpB, we demonstrate the ability of TnpB to generate guide omegaRNA (ωRNA) from its own mRNA through 5' processing. We also uncover a potential <i>cis</i>-regulatory mechanism whereby a region of the TnpB mRNA inhibits DNA cleavage by the RNP complex. We further expand the characterization of TnpB by examining ωRNA processing and RNA-guided nuclease activity in 59 orthologs spanning the natural diversity of the TnpB family. This work reveals a new functionality, ωRNA biogenesis, of TnpB, and characterizes additional members of this biotechnologically useful family of programmable enzymes.</p>\",\"PeriodicalId\":54232,\"journal\":{\"name\":\"CRISPR Journal\",\"volume\":\"6 3\",\"pages\":\"232-242\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278001/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CRISPR Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/crispr.2023.0015\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2023.0015","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
TnpB是Obligate Mobile Element Guided Activity(OMEGA)RNA引导核酸酶家族的成员,存在于转座子中,可能在基因组中维持转座子的功能。以前,研究表明TnpB以RNA引导的方式切割双链和单链DNA底物,但TnpB核糖核蛋白(RNP)复合物的生物发生尚不清楚。使用体外纯化的apo-TnpB,我们证明了TnpB通过5'加工从其自身的mRNA中产生引导ωRNA(ωRNA)的能力。我们还揭示了一种潜在的顺式调节机制,通过该机制,TnpB mRNA的一个区域抑制RNP复合物对DNA的切割。我们通过检测跨越TnpB家族自然多样性的59个直向同源物中ωRNA加工和RNA引导的核酸酶活性,进一步扩展了TnpB的表征。这项工作揭示了TnpB的一种新功能,ωRNA生物发生,并表征了这一生物技术上有用的可编程酶家族的其他成员。
The Transposon-Encoded Protein TnpB Processes Its Own mRNA into ωRNA for Guided Nuclease Activity.
TnpB is a member of the Obligate Mobile Element Guided Activity (OMEGA) RNA-guided nuclease family, is harbored in transposons, and likely functions to maintain the transposon in genomes. Previously, it was shown that TnpB cleaves double- and single-stranded DNA substrates in an RNA-guided manner, but the biogenesis of the TnpB ribonucleoprotein (RNP) complex is unknown. Using in vitro purified apo TnpB, we demonstrate the ability of TnpB to generate guide omegaRNA (ωRNA) from its own mRNA through 5' processing. We also uncover a potential cis-regulatory mechanism whereby a region of the TnpB mRNA inhibits DNA cleavage by the RNP complex. We further expand the characterization of TnpB by examining ωRNA processing and RNA-guided nuclease activity in 59 orthologs spanning the natural diversity of the TnpB family. This work reveals a new functionality, ωRNA biogenesis, of TnpB, and characterizes additional members of this biotechnologically useful family of programmable enzymes.
CRISPR JournalBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍:
In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR.
Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.