{"title":"从固体中连续制备缓冲剂的一步:预测粉末压实和如何防止它","authors":"D. Komuczki , N. Hesse , J. Schmidt , P. Satzer","doi":"10.1016/j.nbt.2023.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>The preparation of buffer solutions used in the biopharmaceutical industry is typically performed manually by the addition of one or multiple buffering reagents to water. Recently, the adaptation of powder feeders for continuous solid feeding was demonstrated for continuous buffer preparation. However, the intrinsic characteristics of powders can change the stability of the process, due to the hygroscopic nature of some substances and humidity-induced caking and compaction behavior, but there is no simple and easy methodology available for predicting this behavior for buffer species. To predict which buffering reagents are suitable without special precautions and investigate their behavior, force displacement measurements were conducted with a customized rheometer over 18 h. While most of the eight investigated buffering reagents indicated uniform compaction, especially sodium acetate and dipotassium hydrogen phosphate (K<sub>2</sub>HPO<sub>4</sub>) showed a significant increase in yield stress after 2 h. Experiments conducted with a 3D printed miniaturized screw conveyor confirmed the increased yield stress measurements by visible compaction and failure of the feeding. By taking additional precautions and adjusting the design of the hopper, we demonstrated a highly linear profile of all buffering reagents over a duration of 12 and 24 h. We showed that force displacement measurements accurately predict the behavior of buffer components in continuous feeding devices for continuous buffer preparation and are a valuable tool to identify buffer components that need special precautions. Stable, precise feeding of all tested buffer components was demonstrated, highlighting the importance of identifying buffers that need a specialized setup with a rapid methodology.</p></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A step closer to continuous buffer preparation from solids: Predicting powder compaction and how to prevent it\",\"authors\":\"D. Komuczki , N. Hesse , J. Schmidt , P. Satzer\",\"doi\":\"10.1016/j.nbt.2023.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The preparation of buffer solutions used in the biopharmaceutical industry is typically performed manually by the addition of one or multiple buffering reagents to water. Recently, the adaptation of powder feeders for continuous solid feeding was demonstrated for continuous buffer preparation. However, the intrinsic characteristics of powders can change the stability of the process, due to the hygroscopic nature of some substances and humidity-induced caking and compaction behavior, but there is no simple and easy methodology available for predicting this behavior for buffer species. To predict which buffering reagents are suitable without special precautions and investigate their behavior, force displacement measurements were conducted with a customized rheometer over 18 h. While most of the eight investigated buffering reagents indicated uniform compaction, especially sodium acetate and dipotassium hydrogen phosphate (K<sub>2</sub>HPO<sub>4</sub>) showed a significant increase in yield stress after 2 h. Experiments conducted with a 3D printed miniaturized screw conveyor confirmed the increased yield stress measurements by visible compaction and failure of the feeding. By taking additional precautions and adjusting the design of the hopper, we demonstrated a highly linear profile of all buffering reagents over a duration of 12 and 24 h. We showed that force displacement measurements accurately predict the behavior of buffer components in continuous feeding devices for continuous buffer preparation and are a valuable tool to identify buffer components that need special precautions. Stable, precise feeding of all tested buffer components was demonstrated, highlighting the importance of identifying buffers that need a specialized setup with a rapid methodology.</p></div>\",\"PeriodicalId\":19190,\"journal\":{\"name\":\"New biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1871678423000249\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871678423000249","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A step closer to continuous buffer preparation from solids: Predicting powder compaction and how to prevent it
The preparation of buffer solutions used in the biopharmaceutical industry is typically performed manually by the addition of one or multiple buffering reagents to water. Recently, the adaptation of powder feeders for continuous solid feeding was demonstrated for continuous buffer preparation. However, the intrinsic characteristics of powders can change the stability of the process, due to the hygroscopic nature of some substances and humidity-induced caking and compaction behavior, but there is no simple and easy methodology available for predicting this behavior for buffer species. To predict which buffering reagents are suitable without special precautions and investigate their behavior, force displacement measurements were conducted with a customized rheometer over 18 h. While most of the eight investigated buffering reagents indicated uniform compaction, especially sodium acetate and dipotassium hydrogen phosphate (K2HPO4) showed a significant increase in yield stress after 2 h. Experiments conducted with a 3D printed miniaturized screw conveyor confirmed the increased yield stress measurements by visible compaction and failure of the feeding. By taking additional precautions and adjusting the design of the hopper, we demonstrated a highly linear profile of all buffering reagents over a duration of 12 and 24 h. We showed that force displacement measurements accurately predict the behavior of buffer components in continuous feeding devices for continuous buffer preparation and are a valuable tool to identify buffer components that need special precautions. Stable, precise feeding of all tested buffer components was demonstrated, highlighting the importance of identifying buffers that need a specialized setup with a rapid methodology.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.