Prasannakumar Palaniappan, Yana Knudsen, Sebastian Meyer, Chiara Gianoli, Katrin Schnürle, Matthias Würl, Jonathan Bortfeldt, Katia Parodi, Marco Riboldi
{"title":"基于列表模式质子射线照片的小动物质子照射多级图像配准:模拟研究。","authors":"Prasannakumar Palaniappan, Yana Knudsen, Sebastian Meyer, Chiara Gianoli, Katrin Schnürle, Matthias Würl, Jonathan Bortfeldt, Katia Parodi, Marco Riboldi","doi":"10.1016/j.zemedi.2023.04.003","DOIUrl":null,"url":null,"abstract":"<p><p>We present a multi-stage and multi-resolution deformable image registration framework for image-guidance at a small animal proton irradiation platform. The framework is based on list-mode proton radiographies acquired at different angles, which are used to deform a 3D treatment planning CT relying on normalized mutual information (NMI) or root mean square error (RMSE) in the projection domain. We utilized a mouse X-ray micro-CT expressed in relative stopping power (RSP), and obtained Monte Carlo simulations of proton images in list-mode for three different treatment sites (brain, head and neck, lung). Rigid transformations and controlled artificial deformation were applied to mimic position misalignments, weight loss and breathing changes. Results were evaluated based on the residual RMSE of RSP in the image domain including the comparison of extracted local features, i.e. between the reference micro-CT and the one transformed taking into account the calculated deformation. The residual RMSE of the RSP showed that the accuracy of the registration framework is promising for compensating rigid (>97% accuracy) and non-rigid (∼95% accuracy) transformations with respect to a conventional 3D-3D registration. Results showed that the registration accuracy is degraded when considering the realistic detector performance and NMI as a metric, whereas the RMSE in projection domain is rather insensitive. This work demonstrates the pre-clinical feasibility of the registration framework on different treatment sites and its use for small animal imaging with a realistic detector. Further computational optimization of the framework is required to enable the use of this tool for online estimation of the deformation.</p>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":" ","pages":"521-532"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-stage image registration based on list-mode proton radiographies for small animal proton irradiation: A simulation study.\",\"authors\":\"Prasannakumar Palaniappan, Yana Knudsen, Sebastian Meyer, Chiara Gianoli, Katrin Schnürle, Matthias Würl, Jonathan Bortfeldt, Katia Parodi, Marco Riboldi\",\"doi\":\"10.1016/j.zemedi.2023.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a multi-stage and multi-resolution deformable image registration framework for image-guidance at a small animal proton irradiation platform. The framework is based on list-mode proton radiographies acquired at different angles, which are used to deform a 3D treatment planning CT relying on normalized mutual information (NMI) or root mean square error (RMSE) in the projection domain. We utilized a mouse X-ray micro-CT expressed in relative stopping power (RSP), and obtained Monte Carlo simulations of proton images in list-mode for three different treatment sites (brain, head and neck, lung). Rigid transformations and controlled artificial deformation were applied to mimic position misalignments, weight loss and breathing changes. Results were evaluated based on the residual RMSE of RSP in the image domain including the comparison of extracted local features, i.e. between the reference micro-CT and the one transformed taking into account the calculated deformation. The residual RMSE of the RSP showed that the accuracy of the registration framework is promising for compensating rigid (>97% accuracy) and non-rigid (∼95% accuracy) transformations with respect to a conventional 3D-3D registration. Results showed that the registration accuracy is degraded when considering the realistic detector performance and NMI as a metric, whereas the RMSE in projection domain is rather insensitive. This work demonstrates the pre-clinical feasibility of the registration framework on different treatment sites and its use for small animal imaging with a realistic detector. Further computational optimization of the framework is required to enable the use of this tool for online estimation of the deformation.</p>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\" \",\"pages\":\"521-532\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.zemedi.2023.04.003\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.zemedi.2023.04.003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Multi-stage image registration based on list-mode proton radiographies for small animal proton irradiation: A simulation study.
We present a multi-stage and multi-resolution deformable image registration framework for image-guidance at a small animal proton irradiation platform. The framework is based on list-mode proton radiographies acquired at different angles, which are used to deform a 3D treatment planning CT relying on normalized mutual information (NMI) or root mean square error (RMSE) in the projection domain. We utilized a mouse X-ray micro-CT expressed in relative stopping power (RSP), and obtained Monte Carlo simulations of proton images in list-mode for three different treatment sites (brain, head and neck, lung). Rigid transformations and controlled artificial deformation were applied to mimic position misalignments, weight loss and breathing changes. Results were evaluated based on the residual RMSE of RSP in the image domain including the comparison of extracted local features, i.e. between the reference micro-CT and the one transformed taking into account the calculated deformation. The residual RMSE of the RSP showed that the accuracy of the registration framework is promising for compensating rigid (>97% accuracy) and non-rigid (∼95% accuracy) transformations with respect to a conventional 3D-3D registration. Results showed that the registration accuracy is degraded when considering the realistic detector performance and NMI as a metric, whereas the RMSE in projection domain is rather insensitive. This work demonstrates the pre-clinical feasibility of the registration framework on different treatment sites and its use for small animal imaging with a realistic detector. Further computational optimization of the framework is required to enable the use of this tool for online estimation of the deformation.
期刊介绍:
Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing.
Focuses of the articles are:
-Biophysical methods in radiation therapy and nuclear medicine
-Dosimetry and radiation protection
-Radiological diagnostics and quality assurance
-Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography
-Ultrasonography diagnostics, application of laser and UV rays
-Electronic processing of biosignals
-Artificial intelligence and machine learning in medical physics
In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.