{"title":"新型希夫碱及其单核和双核配合物的合成、光谱学、热性质、对接和生物学研究","authors":"Khlood Abou-Melha","doi":"10.1002/jmr.3026","DOIUrl":null,"url":null,"abstract":"<p>A novel Schiff base has been synthesized from the condensation of the 3-formyl-2-hydroxybenzoic acid and 4-nitrobenzene-1,2-diamine. The new ligand was found to have two coordination sites. So, it has the capability to form mono- and binuclear complexes with different metal ions. The free ligand and its mono- and binuclear cobalt(II) complexes have been characterized by UV–Visible spectra, IR, elemental analyzes, H<sup>1</sup> NMR, conductimetric, thermal, and magnetic measurements. Results indicated that the cobalt(II) ion is attached to the inside coordination site and the second metal ion attached to the outside coordination site. The complexes are all non-electrolytes, as demonstrated by the molar conductance tests. The thermodynamic parameters of the metal complexes are calculated using Horowitz Metzger and Coats-Redfern methods. The complexes' bonding properties have also been estimated. Molecular docking was employed to forecast the interaction of the prepared with the Candida-albicans receptor (1zap). The biological activities of these metal complexes were tested against some bacteria and fungi. It is evident from the biological screening data that the prepared Co(II) binuclear complexes exhibit predominant activity against <i>Candida albicans</i>, <i>Penicillium oxalicum</i> and <i>Escherichia coli</i>, while they have no activity against <i>Micrococcus roseus</i> and <i>Micrococcus luteus</i>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Studies on the synthesis, spectroscopy, thermal properties, docking, and biology of new Schiff base and its mono- and binuclear complexes\",\"authors\":\"Khlood Abou-Melha\",\"doi\":\"10.1002/jmr.3026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel Schiff base has been synthesized from the condensation of the 3-formyl-2-hydroxybenzoic acid and 4-nitrobenzene-1,2-diamine. The new ligand was found to have two coordination sites. So, it has the capability to form mono- and binuclear complexes with different metal ions. The free ligand and its mono- and binuclear cobalt(II) complexes have been characterized by UV–Visible spectra, IR, elemental analyzes, H<sup>1</sup> NMR, conductimetric, thermal, and magnetic measurements. Results indicated that the cobalt(II) ion is attached to the inside coordination site and the second metal ion attached to the outside coordination site. The complexes are all non-electrolytes, as demonstrated by the molar conductance tests. The thermodynamic parameters of the metal complexes are calculated using Horowitz Metzger and Coats-Redfern methods. The complexes' bonding properties have also been estimated. Molecular docking was employed to forecast the interaction of the prepared with the Candida-albicans receptor (1zap). The biological activities of these metal complexes were tested against some bacteria and fungi. It is evident from the biological screening data that the prepared Co(II) binuclear complexes exhibit predominant activity against <i>Candida albicans</i>, <i>Penicillium oxalicum</i> and <i>Escherichia coli</i>, while they have no activity against <i>Micrococcus roseus</i> and <i>Micrococcus luteus</i>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Studies on the synthesis, spectroscopy, thermal properties, docking, and biology of new Schiff base and its mono- and binuclear complexes
A novel Schiff base has been synthesized from the condensation of the 3-formyl-2-hydroxybenzoic acid and 4-nitrobenzene-1,2-diamine. The new ligand was found to have two coordination sites. So, it has the capability to form mono- and binuclear complexes with different metal ions. The free ligand and its mono- and binuclear cobalt(II) complexes have been characterized by UV–Visible spectra, IR, elemental analyzes, H1 NMR, conductimetric, thermal, and magnetic measurements. Results indicated that the cobalt(II) ion is attached to the inside coordination site and the second metal ion attached to the outside coordination site. The complexes are all non-electrolytes, as demonstrated by the molar conductance tests. The thermodynamic parameters of the metal complexes are calculated using Horowitz Metzger and Coats-Redfern methods. The complexes' bonding properties have also been estimated. Molecular docking was employed to forecast the interaction of the prepared with the Candida-albicans receptor (1zap). The biological activities of these metal complexes were tested against some bacteria and fungi. It is evident from the biological screening data that the prepared Co(II) binuclear complexes exhibit predominant activity against Candida albicans, Penicillium oxalicum and Escherichia coli, while they have no activity against Micrococcus roseus and Micrococcus luteus.