Murat Buyukyoruk, William S Henriques, Blake Wiedenheft
{"title":"澄清CRISPR:为什么在人类基因组中发现的重复序列不应该被认为是CRISPR。","authors":"Murat Buyukyoruk, William S Henriques, Blake Wiedenheft","doi":"10.1089/crispr.2022.0106","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated genes (<i>cas</i>) are essential components of adaptive immune systems that protect bacteria and archaea from viral infection. CRISPR-Cas systems are found in about 40% of bacterial and 85% of archaeal genomes, but not in eukaryotic genomes. Recently, an article published in <i>Communications Biology</i> reported the identification of 12,572 putative CRISPRs in the human genome, which they call \"hCRISPR.\" In this study, we attempt to reproduce this analysis and show that repetitive elements identified as putative CRISPR loci in the human genome contain neither the repeat-spacer-repeat architecture nor the <i>cas</i> genes characteristic of functional CRISPR systems.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"216-221"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277986/pdf/crispr.2022.0106.pdf","citationCount":"1","resultStr":"{\"title\":\"Clarifying CRISPR: Why Repeats Identified in the Human Genome Should Not Be Considered CRISPRs.\",\"authors\":\"Murat Buyukyoruk, William S Henriques, Blake Wiedenheft\",\"doi\":\"10.1089/crispr.2022.0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated genes (<i>cas</i>) are essential components of adaptive immune systems that protect bacteria and archaea from viral infection. CRISPR-Cas systems are found in about 40% of bacterial and 85% of archaeal genomes, but not in eukaryotic genomes. Recently, an article published in <i>Communications Biology</i> reported the identification of 12,572 putative CRISPRs in the human genome, which they call \\\"hCRISPR.\\\" In this study, we attempt to reproduce this analysis and show that repetitive elements identified as putative CRISPR loci in the human genome contain neither the repeat-spacer-repeat architecture nor the <i>cas</i> genes characteristic of functional CRISPR systems.</p>\",\"PeriodicalId\":54232,\"journal\":{\"name\":\"CRISPR Journal\",\"volume\":\"6 3\",\"pages\":\"216-221\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277986/pdf/crispr.2022.0106.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CRISPR Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/crispr.2022.0106\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2022.0106","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Clarifying CRISPR: Why Repeats Identified in the Human Genome Should Not Be Considered CRISPRs.
Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated genes (cas) are essential components of adaptive immune systems that protect bacteria and archaea from viral infection. CRISPR-Cas systems are found in about 40% of bacterial and 85% of archaeal genomes, but not in eukaryotic genomes. Recently, an article published in Communications Biology reported the identification of 12,572 putative CRISPRs in the human genome, which they call "hCRISPR." In this study, we attempt to reproduce this analysis and show that repetitive elements identified as putative CRISPR loci in the human genome contain neither the repeat-spacer-repeat architecture nor the cas genes characteristic of functional CRISPR systems.
CRISPR JournalBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍:
In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR.
Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.