Nam K Tran, Clayton LaValley, Berit Bagley, John Rodrigo
{"title":"医院环境中的护理点血糖装置。","authors":"Nam K Tran, Clayton LaValley, Berit Bagley, John Rodrigo","doi":"10.1080/10408363.2023.2170316","DOIUrl":null,"url":null,"abstract":"<p><p>Dysglycemia is common among hospitalized patients. Accurate point-of-care (POC) glucose monitoring is necessary for the safe administration of insulin. Unfortunately, POC glucose meters are not all created equal. Interfering factors such as abnormal hematocrit, abnormal oxygen tension, and oxidizing/reducing substances can lead to inaccurate glucose measurements and result in inappropriate insulin dosing. The introduction of autocorrecting glucose meters has changed the POC testing landscape. Autocorrecting glucose meters provide more accurate measurements and have been associated with improved glycemic control in hospitalized patients. Continuous glucose monitoring has also created interest in using these platforms in at-risk inpatient populations. Future glucose monitoring technologies such as artificial intelligence/machine learning, wearable smart devices, and closed-loop insulin management systems are poised to transform glycemic management. The goal of this review is to provide an overview of glucose monitoring technology, summarize the clinical impact of glucose monitoring accuracy, and highlight emerging and future POC glucose monitoring technologies.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":"60 4","pages":"290-299"},"PeriodicalIF":6.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Point of care blood glucose devices in the hospital setting.\",\"authors\":\"Nam K Tran, Clayton LaValley, Berit Bagley, John Rodrigo\",\"doi\":\"10.1080/10408363.2023.2170316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysglycemia is common among hospitalized patients. Accurate point-of-care (POC) glucose monitoring is necessary for the safe administration of insulin. Unfortunately, POC glucose meters are not all created equal. Interfering factors such as abnormal hematocrit, abnormal oxygen tension, and oxidizing/reducing substances can lead to inaccurate glucose measurements and result in inappropriate insulin dosing. The introduction of autocorrecting glucose meters has changed the POC testing landscape. Autocorrecting glucose meters provide more accurate measurements and have been associated with improved glycemic control in hospitalized patients. Continuous glucose monitoring has also created interest in using these platforms in at-risk inpatient populations. Future glucose monitoring technologies such as artificial intelligence/machine learning, wearable smart devices, and closed-loop insulin management systems are poised to transform glycemic management. The goal of this review is to provide an overview of glucose monitoring technology, summarize the clinical impact of glucose monitoring accuracy, and highlight emerging and future POC glucose monitoring technologies.</p>\",\"PeriodicalId\":10760,\"journal\":{\"name\":\"Critical reviews in clinical laboratory sciences\",\"volume\":\"60 4\",\"pages\":\"290-299\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in clinical laboratory sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10408363.2023.2170316\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in clinical laboratory sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408363.2023.2170316","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Point of care blood glucose devices in the hospital setting.
Dysglycemia is common among hospitalized patients. Accurate point-of-care (POC) glucose monitoring is necessary for the safe administration of insulin. Unfortunately, POC glucose meters are not all created equal. Interfering factors such as abnormal hematocrit, abnormal oxygen tension, and oxidizing/reducing substances can lead to inaccurate glucose measurements and result in inappropriate insulin dosing. The introduction of autocorrecting glucose meters has changed the POC testing landscape. Autocorrecting glucose meters provide more accurate measurements and have been associated with improved glycemic control in hospitalized patients. Continuous glucose monitoring has also created interest in using these platforms in at-risk inpatient populations. Future glucose monitoring technologies such as artificial intelligence/machine learning, wearable smart devices, and closed-loop insulin management systems are poised to transform glycemic management. The goal of this review is to provide an overview of glucose monitoring technology, summarize the clinical impact of glucose monitoring accuracy, and highlight emerging and future POC glucose monitoring technologies.
期刊介绍:
Critical Reviews in Clinical Laboratory Sciences publishes comprehensive and high quality review articles in all areas of clinical laboratory science, including clinical biochemistry, hematology, microbiology, pathology, transfusion medicine, genetics, immunology and molecular diagnostics. The reviews critically evaluate the status of current issues in the selected areas, with a focus on clinical laboratory diagnostics and latest advances. The adjective “critical” implies a balanced synthesis of results and conclusions that are frequently contradictory and controversial.