Gopi Mohan C, Anju Pushkaran, Kumaran K, Ann MariaT, Raja Biswas
{"title":"基于结构的药效团建模、虚拟筛选、分子对接和生物学评价鉴定PD1/PD-L1抑制剂。","authors":"Gopi Mohan C, Anju Pushkaran, Kumaran K, Ann MariaT, Raja Biswas","doi":"10.1002/minf.202200254","DOIUrl":null,"url":null,"abstract":"<p><p>PD-1/PD-L1 is a critical druggable target for immunotherapy against sepsis. Chemoinformatics techniques involved the structure-based 3D pharmacophore model development followed by virtual screening of small molecule databases to identify the small molecules against PD-L1 pathway inhibition. Raltitrexed and Safinamide act as potent repurposed drugs, and three other Specs database compounds using in silico methods. These compounds were screened based on the pharmacophore fit score and binding affinity towards the active site of the PD-L1 protein. In silico pharmacokinetic profiling of these screened compounds was done to test their biological activity. Next, experimental validation of the best four virtually screened hits was done in vitro for its hemocompatibility and cytotoxicity. Among these, Raltitrexed, Safinamide and Specs compound (AK-968/40642641) effectively increased the proliferation of immune cells and IFN-γ production. These compounds can act as potent PDL-1 inhibitors for adjuvant therapy against sepsis.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"42 6","pages":"e2200254"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of a PD1/PD-L1 inhibitor by structure-based pharmacophore modelling, virtual screening, molecular docking and biological evaluation.\",\"authors\":\"Gopi Mohan C, Anju Pushkaran, Kumaran K, Ann MariaT, Raja Biswas\",\"doi\":\"10.1002/minf.202200254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PD-1/PD-L1 is a critical druggable target for immunotherapy against sepsis. Chemoinformatics techniques involved the structure-based 3D pharmacophore model development followed by virtual screening of small molecule databases to identify the small molecules against PD-L1 pathway inhibition. Raltitrexed and Safinamide act as potent repurposed drugs, and three other Specs database compounds using in silico methods. These compounds were screened based on the pharmacophore fit score and binding affinity towards the active site of the PD-L1 protein. In silico pharmacokinetic profiling of these screened compounds was done to test their biological activity. Next, experimental validation of the best four virtually screened hits was done in vitro for its hemocompatibility and cytotoxicity. Among these, Raltitrexed, Safinamide and Specs compound (AK-968/40642641) effectively increased the proliferation of immune cells and IFN-γ production. These compounds can act as potent PDL-1 inhibitors for adjuvant therapy against sepsis.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\"42 6\",\"pages\":\"e2200254\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202200254\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202200254","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Identification of a PD1/PD-L1 inhibitor by structure-based pharmacophore modelling, virtual screening, molecular docking and biological evaluation.
PD-1/PD-L1 is a critical druggable target for immunotherapy against sepsis. Chemoinformatics techniques involved the structure-based 3D pharmacophore model development followed by virtual screening of small molecule databases to identify the small molecules against PD-L1 pathway inhibition. Raltitrexed and Safinamide act as potent repurposed drugs, and three other Specs database compounds using in silico methods. These compounds were screened based on the pharmacophore fit score and binding affinity towards the active site of the PD-L1 protein. In silico pharmacokinetic profiling of these screened compounds was done to test their biological activity. Next, experimental validation of the best four virtually screened hits was done in vitro for its hemocompatibility and cytotoxicity. Among these, Raltitrexed, Safinamide and Specs compound (AK-968/40642641) effectively increased the proliferation of immune cells and IFN-γ production. These compounds can act as potent PDL-1 inhibitors for adjuvant therapy against sepsis.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.