荷斯坦牛上位遗传对生育和繁殖性状影响的全基因组关联研究。

IF 1.9 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of Animal Breeding and Genetics Pub Date : 2023-06-22 DOI:10.1111/jbg.12813
Kristen Alves, Luiz F. Brito, Mehdi Sargolzaei, Flavio S. Schenkel
{"title":"荷斯坦牛上位遗传对生育和繁殖性状影响的全基因组关联研究。","authors":"Kristen Alves,&nbsp;Luiz F. Brito,&nbsp;Mehdi Sargolzaei,&nbsp;Flavio S. Schenkel","doi":"10.1111/jbg.12813","DOIUrl":null,"url":null,"abstract":"<p>Non-additive genetic effects are well known to play an important role in the phenotypic expression of complex traits, such as fertility and reproduction. In this study, a genome scan was performed using 41,640 single nucleotide polymorphism (SNP) markers to identify genomic regions associated with epistatic (additive-by-additive) effects in fertility and reproduction traits in Holstein cattle. Nine fertility and reproduction traits were analysed on 5825 and 6090 Holstein heifers and cows with phenotypes and genotypes, respectively. The Marginal Epistasis Test (MAPIT) was used to identify SNPs with significant marginal epistatic effects at a chromosome-wise 5% and 10% false discovery rate (FDR) level. The −log<sub>10</sub>(<i>p</i>) values were adjusted by the genomic inflation factor (λ) to correct for the potential bias on the <i>p</i>-values and minimize the possible effects of population stratification. After adjustments, MAPIT enabled the identification of genomic regions with significant marginal epistatic effects for heifers on BTA5 for age at first insemination, BTA3 and BTA24 for non-return rate (NRR); BTA16 and BTA28 for gestation length (GL); BTA1, BTA4 and BTA17 for stillbirth (SB). For the cow traits, MAPIT enabled the identification of regions on BTA11 for GL, BTA11 and BTA16 for SB and BTA19 for calf size (CZ). An additional approach for mapping epistasis in a genome-wide association study was also proposed, in which the genome scan was performed using estimates of epistatic values as the input pseudo-phenotypes, computed using single-trait animal models. Significant SNPs were identified at the chromosome-wise 5% and 10% FDR levels for all traits. For the heifer traits, significant regions were found on BTA7 for AFS; BTA12 for NRR; BTA14 and BTA19 for GL; BTA19 for calving ease (CE); BTA5, BTA24, BTA25 and in the X chromosome for SB; BTA23 and in the X chromosome for CZ and in the X chromosome for the number of services (NS). For the cow traits, significant regions were found on BTA29 and in the X chromosome for NRR, BTA11, BTA16 and in the X chromosome for SB, BTA2 for GL, BTA28 for CZ, BTA19 for calving to first insemination, and in the X chromosome for NS and first insemination to conception. The results suggest that the epistatic genetic effects are likely due to many loci with a small effect rather than few loci with a large effect and/or a single SNP marker alone do not capture the epistatic effects well. The genomic architecture of fertility and reproduction traits is complex, and these results should be validated in independent dairy cattle populations and using alternative statistical models.</p>","PeriodicalId":54885,"journal":{"name":"Journal of Animal Breeding and Genetics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbg.12813","citationCount":"0","resultStr":"{\"title\":\"Genome-wide association studies for epistatic genetic effects on fertility and reproduction traits in Holstein cattle\",\"authors\":\"Kristen Alves,&nbsp;Luiz F. Brito,&nbsp;Mehdi Sargolzaei,&nbsp;Flavio S. Schenkel\",\"doi\":\"10.1111/jbg.12813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-additive genetic effects are well known to play an important role in the phenotypic expression of complex traits, such as fertility and reproduction. In this study, a genome scan was performed using 41,640 single nucleotide polymorphism (SNP) markers to identify genomic regions associated with epistatic (additive-by-additive) effects in fertility and reproduction traits in Holstein cattle. Nine fertility and reproduction traits were analysed on 5825 and 6090 Holstein heifers and cows with phenotypes and genotypes, respectively. The Marginal Epistasis Test (MAPIT) was used to identify SNPs with significant marginal epistatic effects at a chromosome-wise 5% and 10% false discovery rate (FDR) level. The −log<sub>10</sub>(<i>p</i>) values were adjusted by the genomic inflation factor (λ) to correct for the potential bias on the <i>p</i>-values and minimize the possible effects of population stratification. After adjustments, MAPIT enabled the identification of genomic regions with significant marginal epistatic effects for heifers on BTA5 for age at first insemination, BTA3 and BTA24 for non-return rate (NRR); BTA16 and BTA28 for gestation length (GL); BTA1, BTA4 and BTA17 for stillbirth (SB). For the cow traits, MAPIT enabled the identification of regions on BTA11 for GL, BTA11 and BTA16 for SB and BTA19 for calf size (CZ). An additional approach for mapping epistasis in a genome-wide association study was also proposed, in which the genome scan was performed using estimates of epistatic values as the input pseudo-phenotypes, computed using single-trait animal models. Significant SNPs were identified at the chromosome-wise 5% and 10% FDR levels for all traits. For the heifer traits, significant regions were found on BTA7 for AFS; BTA12 for NRR; BTA14 and BTA19 for GL; BTA19 for calving ease (CE); BTA5, BTA24, BTA25 and in the X chromosome for SB; BTA23 and in the X chromosome for CZ and in the X chromosome for the number of services (NS). For the cow traits, significant regions were found on BTA29 and in the X chromosome for NRR, BTA11, BTA16 and in the X chromosome for SB, BTA2 for GL, BTA28 for CZ, BTA19 for calving to first insemination, and in the X chromosome for NS and first insemination to conception. The results suggest that the epistatic genetic effects are likely due to many loci with a small effect rather than few loci with a large effect and/or a single SNP marker alone do not capture the epistatic effects well. The genomic architecture of fertility and reproduction traits is complex, and these results should be validated in independent dairy cattle populations and using alternative statistical models.</p>\",\"PeriodicalId\":54885,\"journal\":{\"name\":\"Journal of Animal Breeding and Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbg.12813\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Breeding and Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jbg.12813\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Breeding and Genetics","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jbg.12813","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,非加性遗传效应在复杂性状的表型表达中发挥着重要作用,如生育和繁殖。在这项研究中,使用41640个单核苷酸多态性(SNP)标记进行了基因组扫描,以确定荷斯坦牛生育和繁殖性状中与上位(逐加)效应相关的基因组区域。分别对5825头和6090头荷斯坦小母牛和具有表型和基因型的奶牛的9个生育和繁殖性状进行了分析。边际上位性检验(MAPIT)用于识别在染色体5%和10%的错误发现率(FDR)水平上具有显著边际上位性效应的SNPs。通过基因组膨胀因子(λ)调整-log10(p)值,以校正对p值的潜在偏差,并将群体分层的可能影响降至最低。调整后,MAPIT能够识别出对小母牛第一次受精年龄的BTA5、对不回率(NRR)的BTA3和BTA24具有显著边际上位性影响的基因组区域;BTA16和BTA28用于妊娠长度(GL);BTA1、BTA4和BTA17用于死产(SB)。对于奶牛性状,MAPIT能够识别GL的BTA11、SB的BTA11和BTA16以及小牛大小(CZ)的BTA19上的区域。还提出了一种在全基因组关联研究中绘制上位性的额外方法,其中使用上位性值的估计值作为输入伪表型进行基因组扫描,使用单性状动物模型计算。所有性状在染色体5%和10%FDR水平上都鉴定出显著的SNP。对于小母牛性状,在BTA7上发现了AFS的显著区域;用于NRR的BTA12;用于GL的BTA14和BTA19;BTA19用于产仔简易性(CE);BTA5、BTA24、BTA25和SB的X染色体;BTA23和X染色体中的CZ和X染色体上的服务数量(NS)。对于奶牛性状,在BTA29和X染色体上发现了NRR、BTA11、BTA16的显著区域,在X染色体上找到了SB、BTA2、BTA28、BTA19的显著区域。结果表明,上位遗传效应可能是由于许多基因座具有较小的效应,而不是少数基因座具有较大的效应和/或单个SNP标记不能很好地捕捉上位效应。生育和繁殖特征的基因组结构是复杂的,这些结果应该在独立的奶牛种群中使用替代统计模型进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-wide association studies for epistatic genetic effects on fertility and reproduction traits in Holstein cattle

Non-additive genetic effects are well known to play an important role in the phenotypic expression of complex traits, such as fertility and reproduction. In this study, a genome scan was performed using 41,640 single nucleotide polymorphism (SNP) markers to identify genomic regions associated with epistatic (additive-by-additive) effects in fertility and reproduction traits in Holstein cattle. Nine fertility and reproduction traits were analysed on 5825 and 6090 Holstein heifers and cows with phenotypes and genotypes, respectively. The Marginal Epistasis Test (MAPIT) was used to identify SNPs with significant marginal epistatic effects at a chromosome-wise 5% and 10% false discovery rate (FDR) level. The −log10(p) values were adjusted by the genomic inflation factor (λ) to correct for the potential bias on the p-values and minimize the possible effects of population stratification. After adjustments, MAPIT enabled the identification of genomic regions with significant marginal epistatic effects for heifers on BTA5 for age at first insemination, BTA3 and BTA24 for non-return rate (NRR); BTA16 and BTA28 for gestation length (GL); BTA1, BTA4 and BTA17 for stillbirth (SB). For the cow traits, MAPIT enabled the identification of regions on BTA11 for GL, BTA11 and BTA16 for SB and BTA19 for calf size (CZ). An additional approach for mapping epistasis in a genome-wide association study was also proposed, in which the genome scan was performed using estimates of epistatic values as the input pseudo-phenotypes, computed using single-trait animal models. Significant SNPs were identified at the chromosome-wise 5% and 10% FDR levels for all traits. For the heifer traits, significant regions were found on BTA7 for AFS; BTA12 for NRR; BTA14 and BTA19 for GL; BTA19 for calving ease (CE); BTA5, BTA24, BTA25 and in the X chromosome for SB; BTA23 and in the X chromosome for CZ and in the X chromosome for the number of services (NS). For the cow traits, significant regions were found on BTA29 and in the X chromosome for NRR, BTA11, BTA16 and in the X chromosome for SB, BTA2 for GL, BTA28 for CZ, BTA19 for calving to first insemination, and in the X chromosome for NS and first insemination to conception. The results suggest that the epistatic genetic effects are likely due to many loci with a small effect rather than few loci with a large effect and/or a single SNP marker alone do not capture the epistatic effects well. The genomic architecture of fertility and reproduction traits is complex, and these results should be validated in independent dairy cattle populations and using alternative statistical models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Animal Breeding and Genetics
Journal of Animal Breeding and Genetics 农林科学-奶制品与动物科学
CiteScore
5.20
自引率
3.80%
发文量
58
审稿时长
12-24 weeks
期刊介绍: The Journal of Animal Breeding and Genetics publishes original articles by international scientists on genomic selection, and any other topic related to breeding programmes, selection, quantitative genetic, genomics, diversity and evolution of domestic animals. Researchers, teachers, and the animal breeding industry will find the reports of interest. Book reviews appear in many issues.
期刊最新文献
Issue Information Influence of variance component estimates on genomic predictions for growth and reproductive-related traits in Nellore cattle. Genomic selection strategies for the German Merino sheep breeding programme - A simulation study. Correction to: Rahbar et al., 2023. Defining desired genetic gains for Pacific white shrimp (Litopeneaus vannamei) breeding objectives using participatory approaches. Journal of Animal Breeding and Genetics. 2024;141:390-402. Combining genomics and semen microbiome increases the accuracy of predicting bull prolificacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1