Alexander P Christensen, Luis Eduardo Garrido, Kiero Guerra-Peña, Hudson Golino
{"title":"比较心理测量网络中的社群检测算法:蒙特卡罗模拟","authors":"Alexander P Christensen, Luis Eduardo Garrido, Kiero Guerra-Peña, Hudson Golino","doi":"10.3758/s13428-023-02106-4","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying the correct number of factors in multivariate data is fundamental to psychological measurement. Factor analysis has a long tradition in the field, but it has been challenged recently by exploratory graph analysis (EGA), an approach based on network psychometrics. EGA first estimates a network and then applies the Walktrap community detection algorithm. Simulation studies have demonstrated that EGA has comparable or better accuracy for recovering the same number of communities as there are factors in the simulated data than factor analytic methods. Despite EGA's effectiveness, there has yet to be an investigation into whether other sparsity induction methods or community detection algorithms could achieve equivalent or better performance. Furthermore, unidimensional structures are fundamental to psychological measurement yet they have been sparsely studied in simulations using community detection algorithms. In the present study, we performed a Monte Carlo simulation using the zero-order correlation matrix, GLASSO, and two variants of a non-regularized partial correlation sparsity induction methods with several community detection algorithms. We examined the performance of these method-algorithm combinations in both continuous and polytomous data across a variety of conditions. The results indicate that the Fast-greedy, Louvain, and Walktrap algorithms paired with the GLASSO method were consistently among the most accurate and least-biased overall.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":" ","pages":"1485-1505"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing community detection algorithms in psychometric networks: A Monte Carlo simulation.\",\"authors\":\"Alexander P Christensen, Luis Eduardo Garrido, Kiero Guerra-Peña, Hudson Golino\",\"doi\":\"10.3758/s13428-023-02106-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying the correct number of factors in multivariate data is fundamental to psychological measurement. Factor analysis has a long tradition in the field, but it has been challenged recently by exploratory graph analysis (EGA), an approach based on network psychometrics. EGA first estimates a network and then applies the Walktrap community detection algorithm. Simulation studies have demonstrated that EGA has comparable or better accuracy for recovering the same number of communities as there are factors in the simulated data than factor analytic methods. Despite EGA's effectiveness, there has yet to be an investigation into whether other sparsity induction methods or community detection algorithms could achieve equivalent or better performance. Furthermore, unidimensional structures are fundamental to psychological measurement yet they have been sparsely studied in simulations using community detection algorithms. In the present study, we performed a Monte Carlo simulation using the zero-order correlation matrix, GLASSO, and two variants of a non-regularized partial correlation sparsity induction methods with several community detection algorithms. We examined the performance of these method-algorithm combinations in both continuous and polytomous data across a variety of conditions. The results indicate that the Fast-greedy, Louvain, and Walktrap algorithms paired with the GLASSO method were consistently among the most accurate and least-biased overall.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\" \",\"pages\":\"1485-1505\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-023-02106-4\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-023-02106-4","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Comparing community detection algorithms in psychometric networks: A Monte Carlo simulation.
Identifying the correct number of factors in multivariate data is fundamental to psychological measurement. Factor analysis has a long tradition in the field, but it has been challenged recently by exploratory graph analysis (EGA), an approach based on network psychometrics. EGA first estimates a network and then applies the Walktrap community detection algorithm. Simulation studies have demonstrated that EGA has comparable or better accuracy for recovering the same number of communities as there are factors in the simulated data than factor analytic methods. Despite EGA's effectiveness, there has yet to be an investigation into whether other sparsity induction methods or community detection algorithms could achieve equivalent or better performance. Furthermore, unidimensional structures are fundamental to psychological measurement yet they have been sparsely studied in simulations using community detection algorithms. In the present study, we performed a Monte Carlo simulation using the zero-order correlation matrix, GLASSO, and two variants of a non-regularized partial correlation sparsity induction methods with several community detection algorithms. We examined the performance of these method-algorithm combinations in both continuous and polytomous data across a variety of conditions. The results indicate that the Fast-greedy, Louvain, and Walktrap algorithms paired with the GLASSO method were consistently among the most accurate and least-biased overall.
期刊介绍:
Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.