Carlos Pineda-Antunez, Claudia Seguin, Luuk A van Duuren, Amy B Knudsen, Barak Davidi, Pedro Nascimento de Lima, Carolyn Rutter, Karen M Kuntz, Iris Lansdorp-Vogelaar, Nicholson Collier, Jonathan Ozik, Fernando Alarid-Escudero
{"title":"CISNET结直肠癌癌症模型的基于模拟器的贝叶斯校准。","authors":"Carlos Pineda-Antunez, Claudia Seguin, Luuk A van Duuren, Amy B Knudsen, Barak Davidi, Pedro Nascimento de Lima, Carolyn Rutter, Karen M Kuntz, Iris Lansdorp-Vogelaar, Nicholson Collier, Jonathan Ozik, Fernando Alarid-Escudero","doi":"10.1101/2023.02.27.23286525","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To calibrate Cancer Intervention and Surveillance Modeling Network (CISNET) 's SimCRC, MISCAN-Colon, and CRC-SPIN simulation models of the natural history colorectal cancer (CRC) with an emulator-based Bayesian algorithm and internally validate the model-predicted outcomes to calibration targets.</p><p><strong>Methods: </strong>We used Latin hypercube sampling to sample up to 50,000 parameter sets for each CISNET-CRC model and generated the corresponding outputs. We trained multilayer perceptron artificial neural networks (ANN) as emulators using the input and output samples for each CISNET-CRC model. We selected ANN structures with corresponding hyperparameters (i.e., number of hidden layers, nodes, activation functions, epochs, and optimizer) that minimize the predicted mean square error on the validation sample. We implemented the ANN emulators in a probabilistic programming language and calibrated the input parameters with Hamiltonian Monte Carlo-based algorithms to obtain the joint posterior distributions of the CISNET-CRC models' parameters. We internally validated each calibrated emulator by comparing the model-predicted posterior outputs against the calibration targets.</p><p><strong>Results: </strong>The optimal ANN for SimCRC had four hidden layers and 360 hidden nodes, MISCAN-Colon had 4 hidden layers and 114 hidden nodes, and CRC-SPIN had one hidden layer and 140 hidden nodes. The total time for training and calibrating the emulators was 7.3, 4.0, and 0.66 hours for SimCRC, MISCAN-Colon, and CRC-SPIN, respectively. The mean of the model-predicted outputs fell within the 95% confidence intervals of the calibration targets in 98 of 110 for SimCRC, 65 of 93 for MISCAN, and 31 of 41 targets for CRC-SPIN.</p><p><strong>Conclusions: </strong>Using ANN emulators is a practical solution to reduce the computational burden and complexity for Bayesian calibration of individual-level simulation models used for policy analysis, like the CISNET CRC models. In this work, we present a step-by-step guide to constructing emulators for calibrating three realistic CRC individual-level models using a Bayesian approach.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/92/nihpp-2023.02.27.23286525v1.PMC10002763.pdf","citationCount":"0","resultStr":"{\"title\":\"Emulator-based Bayesian calibration of the CISNET colorectal cancer models.\",\"authors\":\"Carlos Pineda-Antunez, Claudia Seguin, Luuk A van Duuren, Amy B Knudsen, Barak Davidi, Pedro Nascimento de Lima, Carolyn Rutter, Karen M Kuntz, Iris Lansdorp-Vogelaar, Nicholson Collier, Jonathan Ozik, Fernando Alarid-Escudero\",\"doi\":\"10.1101/2023.02.27.23286525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To calibrate Cancer Intervention and Surveillance Modeling Network (CISNET) 's SimCRC, MISCAN-Colon, and CRC-SPIN simulation models of the natural history colorectal cancer (CRC) with an emulator-based Bayesian algorithm and internally validate the model-predicted outcomes to calibration targets.</p><p><strong>Methods: </strong>We used Latin hypercube sampling to sample up to 50,000 parameter sets for each CISNET-CRC model and generated the corresponding outputs. We trained multilayer perceptron artificial neural networks (ANN) as emulators using the input and output samples for each CISNET-CRC model. We selected ANN structures with corresponding hyperparameters (i.e., number of hidden layers, nodes, activation functions, epochs, and optimizer) that minimize the predicted mean square error on the validation sample. We implemented the ANN emulators in a probabilistic programming language and calibrated the input parameters with Hamiltonian Monte Carlo-based algorithms to obtain the joint posterior distributions of the CISNET-CRC models' parameters. We internally validated each calibrated emulator by comparing the model-predicted posterior outputs against the calibration targets.</p><p><strong>Results: </strong>The optimal ANN for SimCRC had four hidden layers and 360 hidden nodes, MISCAN-Colon had 4 hidden layers and 114 hidden nodes, and CRC-SPIN had one hidden layer and 140 hidden nodes. The total time for training and calibrating the emulators was 7.3, 4.0, and 0.66 hours for SimCRC, MISCAN-Colon, and CRC-SPIN, respectively. The mean of the model-predicted outputs fell within the 95% confidence intervals of the calibration targets in 98 of 110 for SimCRC, 65 of 93 for MISCAN, and 31 of 41 targets for CRC-SPIN.</p><p><strong>Conclusions: </strong>Using ANN emulators is a practical solution to reduce the computational burden and complexity for Bayesian calibration of individual-level simulation models used for policy analysis, like the CISNET CRC models. In this work, we present a step-by-step guide to constructing emulators for calibrating three realistic CRC individual-level models using a Bayesian approach.</p>\",\"PeriodicalId\":18659,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/92/nihpp-2023.02.27.23286525v1.PMC10002763.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.02.27.23286525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.02.27.23286525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
目的:用基于模拟器的贝叶斯算法校准癌症干预和监测建模网络(CISNET)的自然史结直肠癌癌症(CRC)的SimCRC、MISCAN-Colon和CRC-SIN模拟模型,并在内部验证模型预测结果与校准目标的一致性。方法:我们使用拉丁超立方体采样对每个CISNET-CRC模型的多达50000个参数集进行采样,并生成相应的输出。我们使用每个CISNET-CRC模型的输入和输出样本来训练多层感知器人工神经网络(ANN)作为模拟器。我们选择了具有相应超参数(即隐藏层的数量、节点、激活函数、时期和优化器)的ANN结构,以最小化验证样本上的预测均方误差。我们用概率编程语言实现了ANN仿真器,并用基于Hamiltonian Monte Carlo的算法校准了输入参数,以获得CISNET-CRC模型参数的联合后验分布。我们通过将模型预测的后验输出与校准目标进行比较,对每个校准模拟器进行内部验证。结果:SimCRC的最优神经网络有4个隐藏层和360个隐藏节点,MISCAN Colon有4个隐层和114个隐藏节点;CRC-SPIN有1个隐层,140个隐藏节点。SimCRC、MISCAN Colon和CRC-SPIN的模拟器训练和校准总时间分别为7.3、4.0和0.66小时。模型预测输出的平均值在校准目标的95%置信区间内,SimCRC为110个中的98个,MISCAN为93个中的65个,CRC-SPIN为41个中的31个。结论:使用ANN仿真器是一种实用的解决方案,可以减少用于策略分析的单个级模拟模型的贝叶斯校准的计算负担和复杂性,如CISNET CRC模型。
Emulator-based Bayesian calibration of the CISNET colorectal cancer models.
Purpose: To calibrate Cancer Intervention and Surveillance Modeling Network (CISNET) 's SimCRC, MISCAN-Colon, and CRC-SPIN simulation models of the natural history colorectal cancer (CRC) with an emulator-based Bayesian algorithm and internally validate the model-predicted outcomes to calibration targets.
Methods: We used Latin hypercube sampling to sample up to 50,000 parameter sets for each CISNET-CRC model and generated the corresponding outputs. We trained multilayer perceptron artificial neural networks (ANN) as emulators using the input and output samples for each CISNET-CRC model. We selected ANN structures with corresponding hyperparameters (i.e., number of hidden layers, nodes, activation functions, epochs, and optimizer) that minimize the predicted mean square error on the validation sample. We implemented the ANN emulators in a probabilistic programming language and calibrated the input parameters with Hamiltonian Monte Carlo-based algorithms to obtain the joint posterior distributions of the CISNET-CRC models' parameters. We internally validated each calibrated emulator by comparing the model-predicted posterior outputs against the calibration targets.
Results: The optimal ANN for SimCRC had four hidden layers and 360 hidden nodes, MISCAN-Colon had 4 hidden layers and 114 hidden nodes, and CRC-SPIN had one hidden layer and 140 hidden nodes. The total time for training and calibrating the emulators was 7.3, 4.0, and 0.66 hours for SimCRC, MISCAN-Colon, and CRC-SPIN, respectively. The mean of the model-predicted outputs fell within the 95% confidence intervals of the calibration targets in 98 of 110 for SimCRC, 65 of 93 for MISCAN, and 31 of 41 targets for CRC-SPIN.
Conclusions: Using ANN emulators is a practical solution to reduce the computational burden and complexity for Bayesian calibration of individual-level simulation models used for policy analysis, like the CISNET CRC models. In this work, we present a step-by-step guide to constructing emulators for calibrating three realistic CRC individual-level models using a Bayesian approach.