Hairong Yu, Haoyong Yu, Rong Zhang, Danfeng Peng, Dandan Yan, Yunjuan Gu, Yuqian Bao, Weiping Jia, Hong Zhang, Cheng Hu
{"title":"在诊断肥胖症和糖尿病方面,靶向基因面板比全外显子组测序更具优势。","authors":"Hairong Yu, Haoyong Yu, Rong Zhang, Danfeng Peng, Dandan Yan, Yunjuan Gu, Yuqian Bao, Weiping Jia, Hong Zhang, Cheng Hu","doi":"10.1093/jmcb/mjad040","DOIUrl":null,"url":null,"abstract":"<p><p>A small fraction of patients diagnosed with obesity or diabetes mellitus has an underlying monogenic cause. Here, we constructed a targeted gene panel consisting of 83 genes reported to be causative for monogenic obesity or diabetes. We performed this panel in 481 patients to detect causative variants and compared these results with whole-exome sequencing (WES) data available for 146 of these patients. The coverage of targeted gene panel sequencing was significantly higher than that of WES. The diagnostic yield in patients sequenced by the panel was 32.9% with subsequent WES leading to three additional diagnoses with two novel genes. In total, 178 variants in 83 genes were detected in 146 patients by targeted sequencing. Three of the 178 variants were missed by WES, although the WES-only approach had a similar diagnostic yield. For the 335 samples only receiving targeted sequencing, the diagnostic yield was 32.2%. In conclusion, taking into account the lower costs, shorter turnaround time, and higher quality of data, targeted sequencing is a more effective screening method for monogenic obesity and diabetes compared to WES. Therefore, this approach could be routinely established and used as a first-tier test in clinical practice for specific patients.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847719/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeted gene panel provides advantages over whole-exome sequencing for diagnosing obesity and diabetes mellitus.\",\"authors\":\"Hairong Yu, Haoyong Yu, Rong Zhang, Danfeng Peng, Dandan Yan, Yunjuan Gu, Yuqian Bao, Weiping Jia, Hong Zhang, Cheng Hu\",\"doi\":\"10.1093/jmcb/mjad040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A small fraction of patients diagnosed with obesity or diabetes mellitus has an underlying monogenic cause. Here, we constructed a targeted gene panel consisting of 83 genes reported to be causative for monogenic obesity or diabetes. We performed this panel in 481 patients to detect causative variants and compared these results with whole-exome sequencing (WES) data available for 146 of these patients. The coverage of targeted gene panel sequencing was significantly higher than that of WES. The diagnostic yield in patients sequenced by the panel was 32.9% with subsequent WES leading to three additional diagnoses with two novel genes. In total, 178 variants in 83 genes were detected in 146 patients by targeted sequencing. Three of the 178 variants were missed by WES, although the WES-only approach had a similar diagnostic yield. For the 335 samples only receiving targeted sequencing, the diagnostic yield was 32.2%. In conclusion, taking into account the lower costs, shorter turnaround time, and higher quality of data, targeted sequencing is a more effective screening method for monogenic obesity and diabetes compared to WES. Therefore, this approach could be routinely established and used as a first-tier test in clinical practice for specific patients.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847719/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjad040\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjad040","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Targeted gene panel provides advantages over whole-exome sequencing for diagnosing obesity and diabetes mellitus.
A small fraction of patients diagnosed with obesity or diabetes mellitus has an underlying monogenic cause. Here, we constructed a targeted gene panel consisting of 83 genes reported to be causative for monogenic obesity or diabetes. We performed this panel in 481 patients to detect causative variants and compared these results with whole-exome sequencing (WES) data available for 146 of these patients. The coverage of targeted gene panel sequencing was significantly higher than that of WES. The diagnostic yield in patients sequenced by the panel was 32.9% with subsequent WES leading to three additional diagnoses with two novel genes. In total, 178 variants in 83 genes were detected in 146 patients by targeted sequencing. Three of the 178 variants were missed by WES, although the WES-only approach had a similar diagnostic yield. For the 335 samples only receiving targeted sequencing, the diagnostic yield was 32.2%. In conclusion, taking into account the lower costs, shorter turnaround time, and higher quality of data, targeted sequencing is a more effective screening method for monogenic obesity and diabetes compared to WES. Therefore, this approach could be routinely established and used as a first-tier test in clinical practice for specific patients.
期刊介绍:
The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome.
JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.