Grégoire Cullot, Samuel Amintas, Laura Karembé, Valérie Prouzet-Mauléon, Julie Rébillard, Lisa Boureau, David Cappellen, Aurélie Bedel, François Moreau-Gaudry, Stéphanie Dulucq, Sandrine Dabernat, Béatrice Turcq
{"title":"特异性高灵敏度酶报告基因解锁介导的致癌BCR::ABL1和EGFR重排检测。","authors":"Grégoire Cullot, Samuel Amintas, Laura Karembé, Valérie Prouzet-Mauléon, Julie Rébillard, Lisa Boureau, David Cappellen, Aurélie Bedel, François Moreau-Gaudry, Stéphanie Dulucq, Sandrine Dabernat, Béatrice Turcq","doi":"10.1089/crispr.2022.0070","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in molecular medicine have placed nucleic acid detection methods at the center of an increasing number of clinical applications. Polymerase chain reaction (PCR)-based diagnostics have been widely adopted for their versatility, specificity, and sensitivity. However, recently reported clustered regularly interspaced short palindromic repeats-based methods have demonstrated equivalent to superior performance, with increased portability and reduced processing time and cost. In this study, we applied Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) technology to the detection of oncogenic rearrangements. We implemented SHERLOCK for the detection of <i>BCR::ABL1</i> mRNA, a hallmark of chronic myeloid leukemia (CML), and <i>EGFR</i> DNA oncogenic alleles, frequently detected in glioblastoma and non-small cell lung cancer (NSCLC). SHERLOCK enabled rapid, sensitive, and variant-specific detection of <i>BCR::ABL1</i> and <i>EGFR</i> alterations. Compared with the gold-standard PCR-based methods currently used in clinic, SHERLOCK achieved equivalent to greater sensitivity, suggesting it could be a new tool in CML and NSCLC, to detect low level of molecular residual disease.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 2","pages":"140-151"},"PeriodicalIF":3.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specific High-Sensitivity Enzymatic Reporter UnLOCKing-Mediated Detection of Oncogenic <i>BCR::ABL1</i> and <i>EGFR</i> Rearrangements.\",\"authors\":\"Grégoire Cullot, Samuel Amintas, Laura Karembé, Valérie Prouzet-Mauléon, Julie Rébillard, Lisa Boureau, David Cappellen, Aurélie Bedel, François Moreau-Gaudry, Stéphanie Dulucq, Sandrine Dabernat, Béatrice Turcq\",\"doi\":\"10.1089/crispr.2022.0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in molecular medicine have placed nucleic acid detection methods at the center of an increasing number of clinical applications. Polymerase chain reaction (PCR)-based diagnostics have been widely adopted for their versatility, specificity, and sensitivity. However, recently reported clustered regularly interspaced short palindromic repeats-based methods have demonstrated equivalent to superior performance, with increased portability and reduced processing time and cost. In this study, we applied Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) technology to the detection of oncogenic rearrangements. We implemented SHERLOCK for the detection of <i>BCR::ABL1</i> mRNA, a hallmark of chronic myeloid leukemia (CML), and <i>EGFR</i> DNA oncogenic alleles, frequently detected in glioblastoma and non-small cell lung cancer (NSCLC). SHERLOCK enabled rapid, sensitive, and variant-specific detection of <i>BCR::ABL1</i> and <i>EGFR</i> alterations. Compared with the gold-standard PCR-based methods currently used in clinic, SHERLOCK achieved equivalent to greater sensitivity, suggesting it could be a new tool in CML and NSCLC, to detect low level of molecular residual disease.</p>\",\"PeriodicalId\":54232,\"journal\":{\"name\":\"CRISPR Journal\",\"volume\":\"6 2\",\"pages\":\"140-151\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CRISPR Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/crispr.2022.0070\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2022.0070","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Specific High-Sensitivity Enzymatic Reporter UnLOCKing-Mediated Detection of Oncogenic BCR::ABL1 and EGFR Rearrangements.
Advances in molecular medicine have placed nucleic acid detection methods at the center of an increasing number of clinical applications. Polymerase chain reaction (PCR)-based diagnostics have been widely adopted for their versatility, specificity, and sensitivity. However, recently reported clustered regularly interspaced short palindromic repeats-based methods have demonstrated equivalent to superior performance, with increased portability and reduced processing time and cost. In this study, we applied Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) technology to the detection of oncogenic rearrangements. We implemented SHERLOCK for the detection of BCR::ABL1 mRNA, a hallmark of chronic myeloid leukemia (CML), and EGFR DNA oncogenic alleles, frequently detected in glioblastoma and non-small cell lung cancer (NSCLC). SHERLOCK enabled rapid, sensitive, and variant-specific detection of BCR::ABL1 and EGFR alterations. Compared with the gold-standard PCR-based methods currently used in clinic, SHERLOCK achieved equivalent to greater sensitivity, suggesting it could be a new tool in CML and NSCLC, to detect low level of molecular residual disease.
CRISPR JournalBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍:
In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR.
Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.