Jonathan A Dudley, Thomas C Maloney, John O Simon, Gowtham Atluri, Sarah L Karalunas, Mekibib Altaye, Jeffery N Epstein, Leanne Tamm
{"title":"ABCD_Harmonizer:用于绘制和控制青少年大脑认知发展研究中扫描仪诱发变异的开源工具。","authors":"Jonathan A Dudley, Thomas C Maloney, John O Simon, Gowtham Atluri, Sarah L Karalunas, Mekibib Altaye, Jeffery N Epstein, Leanne Tamm","doi":"10.1007/s12021-023-09624-8","DOIUrl":null,"url":null,"abstract":"<p><p>Data from multisite magnetic resonance imaging (MRI) studies contain variance attributable to the scanner that can reduce statistical power and potentially bias results if not appropriately managed. The Adolescent Cognitive Brain Development (ABCD) study is an ongoing, longitudinal neuroimaging study acquiring data from over 11,000 children starting at 9-10 years of age. These scans are acquired on 29 different scanners of 5 different model types manufactured by 3 different vendors. Publicly available data from the ABCD study include structural MRI (sMRI) measures such as cortical thickness and diffusion MRI (dMRI) measures such as fractional anisotropy. In this work, we 1) quantify the variance attributable to scanner effects in the sMRI and dMRI datasets, 2) demonstrate the effectiveness of the data harmonization approach called ComBat to address scanner effects, and 3) present a simple, open-source tool for investigators to harmonize image features from the ABCD study. Scanner-induced variance was present in every image feature and varied in magnitude by feature type and brain location. For almost all features, scanner variance exceeded variability attributable to age and sex. ComBat harmonization was shown to effectively remove scanner induced variance from all image features while preserving the biological variability in the data. Moreover, we show that for studies examining relatively small subsamples of the ABCD dataset, the use of ComBat harmonized data provides more accurate estimates of effect sizes compared to controlling for scanner effects using ordinary least squares regression.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"21 2","pages":"323-337"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849121/pdf/","citationCount":"0","resultStr":"{\"title\":\"ABCD_Harmonizer: An Open-source Tool for Mapping and Controlling for Scanner Induced Variance in the Adolescent Brain Cognitive Development Study.\",\"authors\":\"Jonathan A Dudley, Thomas C Maloney, John O Simon, Gowtham Atluri, Sarah L Karalunas, Mekibib Altaye, Jeffery N Epstein, Leanne Tamm\",\"doi\":\"10.1007/s12021-023-09624-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data from multisite magnetic resonance imaging (MRI) studies contain variance attributable to the scanner that can reduce statistical power and potentially bias results if not appropriately managed. The Adolescent Cognitive Brain Development (ABCD) study is an ongoing, longitudinal neuroimaging study acquiring data from over 11,000 children starting at 9-10 years of age. These scans are acquired on 29 different scanners of 5 different model types manufactured by 3 different vendors. Publicly available data from the ABCD study include structural MRI (sMRI) measures such as cortical thickness and diffusion MRI (dMRI) measures such as fractional anisotropy. In this work, we 1) quantify the variance attributable to scanner effects in the sMRI and dMRI datasets, 2) demonstrate the effectiveness of the data harmonization approach called ComBat to address scanner effects, and 3) present a simple, open-source tool for investigators to harmonize image features from the ABCD study. Scanner-induced variance was present in every image feature and varied in magnitude by feature type and brain location. For almost all features, scanner variance exceeded variability attributable to age and sex. ComBat harmonization was shown to effectively remove scanner induced variance from all image features while preserving the biological variability in the data. Moreover, we show that for studies examining relatively small subsamples of the ABCD dataset, the use of ComBat harmonized data provides more accurate estimates of effect sizes compared to controlling for scanner effects using ordinary least squares regression.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":\"21 2\",\"pages\":\"323-337\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849121/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-023-09624-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-023-09624-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
ABCD_Harmonizer: An Open-source Tool for Mapping and Controlling for Scanner Induced Variance in the Adolescent Brain Cognitive Development Study.
Data from multisite magnetic resonance imaging (MRI) studies contain variance attributable to the scanner that can reduce statistical power and potentially bias results if not appropriately managed. The Adolescent Cognitive Brain Development (ABCD) study is an ongoing, longitudinal neuroimaging study acquiring data from over 11,000 children starting at 9-10 years of age. These scans are acquired on 29 different scanners of 5 different model types manufactured by 3 different vendors. Publicly available data from the ABCD study include structural MRI (sMRI) measures such as cortical thickness and diffusion MRI (dMRI) measures such as fractional anisotropy. In this work, we 1) quantify the variance attributable to scanner effects in the sMRI and dMRI datasets, 2) demonstrate the effectiveness of the data harmonization approach called ComBat to address scanner effects, and 3) present a simple, open-source tool for investigators to harmonize image features from the ABCD study. Scanner-induced variance was present in every image feature and varied in magnitude by feature type and brain location. For almost all features, scanner variance exceeded variability attributable to age and sex. ComBat harmonization was shown to effectively remove scanner induced variance from all image features while preserving the biological variability in the data. Moreover, we show that for studies examining relatively small subsamples of the ABCD dataset, the use of ComBat harmonized data provides more accurate estimates of effect sizes compared to controlling for scanner effects using ordinary least squares regression.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.