融合各种基于优化的特征平滑方法用于可穿戴和无创血糖估计

IF 1.9 4区 生物学 Q4 CELL BIOLOGY IET Systems Biology Pub Date : 2023-03-31 DOI:10.1049/syb2.12063
Yiting Wei, Bingo Wing-Kuen Ling, Danni Chen, Yuheng Dai, Qing Liu
{"title":"融合各种基于优化的特征平滑方法用于可穿戴和无创血糖估计","authors":"Yiting Wei,&nbsp;Bingo Wing-Kuen Ling,&nbsp;Danni Chen,&nbsp;Yuheng Dai,&nbsp;Qing Liu","doi":"10.1049/syb2.12063","DOIUrl":null,"url":null,"abstract":"<p>The traditional blood glucose estimation method requires to take the invasive measurements several times a day. Therefore, it has a high infection risk and the users are suffered from the pain. Moreover, the long term consumable cost is high. Recently, the wearable and non-invasive blood glucose estimation approach has been proposed. However, due to the unreliability of the acquisition device, the presence of the noise and the variations of the acquisition environments, the obtained features and the reference blood glucose values are highly unreliable. Moreover, different subjects have different responses of the infrared light to the blood glucose. To address this issue, a polynomial fitting approach to smooth the obtained features or the reference blood glucose values has been proposed. In particular, the design of the coefficients in the polynomial is formulated as the various optimisation problems. First, the blood glucose values are estimated based on the individual optimisation approaches. Second, the absolute difference values between the estimated blood glucose values and the actual blood glucose values based on each optimisation approach are computed. Third, these absolute difference values for each optimisation approach are sorted in the ascending order. Fourth, for each sorted blood glucose value, the optimisation method corresponding to the minimum absolute difference value is selected. Fifth, the accumulate probability of each selected optimisation method is computed. If the accumulate probability of any selected optimisation method at a point is greater than a threshold value, then the accumulate probabilities of these three selected optimisation methods at that point are reset to zero. A range of the sorted blood glucose values are defined as that with the corresponding boundaries points being the previous reset point and this reset point. Hence, after performing the above procedures for all the sorted reference blood glucose values in the validation set, the regions of the sorted reference blood glucose values and the corresponding optimisation methods in these regions are determined. It is worth noting that the conventional lowpass denoising method was performed in the signal domain (either in the time domain or in the frequency domain), while the authors’ proposed method is performed in the feature space or the reference blood glucose space. Hence, the authors’ proposed method can further improve the reliability of the obtained feature values or the reference blood glucose values so as to improve the accuracy of the blood glucose estimation. Moreover, the individual modelling regression method has been employed here to suppress the effects of different users having different responses of the infrared light to the blood glucose values. The computer numerical simulation results show that the authors’ proposed method yields the mean absolute relative deviation (MARD) at 0.0930 and the percentage of the test data falling in the zone A of the Clarke error grid at 94.1176%.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12063","citationCount":"0","resultStr":"{\"title\":\"Fusion of various optimisation based feature smoothing methods for wearable and non-invasive blood glucose estimation\",\"authors\":\"Yiting Wei,&nbsp;Bingo Wing-Kuen Ling,&nbsp;Danni Chen,&nbsp;Yuheng Dai,&nbsp;Qing Liu\",\"doi\":\"10.1049/syb2.12063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The traditional blood glucose estimation method requires to take the invasive measurements several times a day. Therefore, it has a high infection risk and the users are suffered from the pain. Moreover, the long term consumable cost is high. Recently, the wearable and non-invasive blood glucose estimation approach has been proposed. However, due to the unreliability of the acquisition device, the presence of the noise and the variations of the acquisition environments, the obtained features and the reference blood glucose values are highly unreliable. Moreover, different subjects have different responses of the infrared light to the blood glucose. To address this issue, a polynomial fitting approach to smooth the obtained features or the reference blood glucose values has been proposed. In particular, the design of the coefficients in the polynomial is formulated as the various optimisation problems. First, the blood glucose values are estimated based on the individual optimisation approaches. Second, the absolute difference values between the estimated blood glucose values and the actual blood glucose values based on each optimisation approach are computed. Third, these absolute difference values for each optimisation approach are sorted in the ascending order. Fourth, for each sorted blood glucose value, the optimisation method corresponding to the minimum absolute difference value is selected. Fifth, the accumulate probability of each selected optimisation method is computed. If the accumulate probability of any selected optimisation method at a point is greater than a threshold value, then the accumulate probabilities of these three selected optimisation methods at that point are reset to zero. A range of the sorted blood glucose values are defined as that with the corresponding boundaries points being the previous reset point and this reset point. Hence, after performing the above procedures for all the sorted reference blood glucose values in the validation set, the regions of the sorted reference blood glucose values and the corresponding optimisation methods in these regions are determined. It is worth noting that the conventional lowpass denoising method was performed in the signal domain (either in the time domain or in the frequency domain), while the authors’ proposed method is performed in the feature space or the reference blood glucose space. Hence, the authors’ proposed method can further improve the reliability of the obtained feature values or the reference blood glucose values so as to improve the accuracy of the blood glucose estimation. Moreover, the individual modelling regression method has been employed here to suppress the effects of different users having different responses of the infrared light to the blood glucose values. The computer numerical simulation results show that the authors’ proposed method yields the mean absolute relative deviation (MARD) at 0.0930 and the percentage of the test data falling in the zone A of the Clarke error grid at 94.1176%.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12063\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12063\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12063","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

传统的血糖测量方法需要每天进行多次有创测量。因此,它具有很高的感染风险,使用者遭受痛苦。而且,长期耗材成本高。近年来,人们提出了一种可穿戴的无创血糖测量方法。然而,由于采集设备的不可靠性、噪声的存在和采集环境的变化,所获得的特征和参考血糖值是高度不可靠的。此外,不同的受试者对红外光对血糖的反应也不同。为了解决这个问题,提出了一种多项式拟合方法来平滑得到的特征或参考血糖值。特别地,多项式中系数的设计被表述为各种优化问题。首先,根据个体优化方法估计血糖值。其次,计算基于每种优化方法的估计血糖值与实际血糖值之间的绝对差值。第三,每个优化方法的绝对差值按升序排序。第四,对每一个分选的血糖值,选择绝对差值最小所对应的优化方法。第五,计算每种选择的优化方法的累积概率。如果任何选择的优化方法在某一点的累积概率大于阈值,则这三个选择的优化方法在该点的累积概率重置为零。将分选血糖值的范围定义为对应的边界点为前一个重置点和此重置点。因此,对验证集中所有排序后的参考血糖值执行上述步骤后,确定了排序后的参考血糖值的区域以及在这些区域中相应的优化方法。值得注意的是,传统的低通去噪方法是在信号域(时域或频域)进行的,而作者提出的方法是在特征空间或参考血糖空间进行的。因此,本文提出的方法可以进一步提高得到的特征值或参考血糖值的可靠性,从而提高血糖估计的准确性。此外,本文还采用了个体建模回归方法来抑制不同用户对红外光的不同反应对血糖值的影响。计算机数值模拟结果表明,本文方法的平均绝对相对偏差(MARD)为0.0930,测试数据落在Clarke误差网格A区的百分比为94.1176%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusion of various optimisation based feature smoothing methods for wearable and non-invasive blood glucose estimation

The traditional blood glucose estimation method requires to take the invasive measurements several times a day. Therefore, it has a high infection risk and the users are suffered from the pain. Moreover, the long term consumable cost is high. Recently, the wearable and non-invasive blood glucose estimation approach has been proposed. However, due to the unreliability of the acquisition device, the presence of the noise and the variations of the acquisition environments, the obtained features and the reference blood glucose values are highly unreliable. Moreover, different subjects have different responses of the infrared light to the blood glucose. To address this issue, a polynomial fitting approach to smooth the obtained features or the reference blood glucose values has been proposed. In particular, the design of the coefficients in the polynomial is formulated as the various optimisation problems. First, the blood glucose values are estimated based on the individual optimisation approaches. Second, the absolute difference values between the estimated blood glucose values and the actual blood glucose values based on each optimisation approach are computed. Third, these absolute difference values for each optimisation approach are sorted in the ascending order. Fourth, for each sorted blood glucose value, the optimisation method corresponding to the minimum absolute difference value is selected. Fifth, the accumulate probability of each selected optimisation method is computed. If the accumulate probability of any selected optimisation method at a point is greater than a threshold value, then the accumulate probabilities of these three selected optimisation methods at that point are reset to zero. A range of the sorted blood glucose values are defined as that with the corresponding boundaries points being the previous reset point and this reset point. Hence, after performing the above procedures for all the sorted reference blood glucose values in the validation set, the regions of the sorted reference blood glucose values and the corresponding optimisation methods in these regions are determined. It is worth noting that the conventional lowpass denoising method was performed in the signal domain (either in the time domain or in the frequency domain), while the authors’ proposed method is performed in the feature space or the reference blood glucose space. Hence, the authors’ proposed method can further improve the reliability of the obtained feature values or the reference blood glucose values so as to improve the accuracy of the blood glucose estimation. Moreover, the individual modelling regression method has been employed here to suppress the effects of different users having different responses of the infrared light to the blood glucose values. The computer numerical simulation results show that the authors’ proposed method yields the mean absolute relative deviation (MARD) at 0.0930 and the percentage of the test data falling in the zone A of the Clarke error grid at 94.1176%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
期刊最新文献
iGATTLDA: Integrative graph attention and transformer-based model for predicting lncRNA-Disease associations. A tumour-associated macrophage-based signature for deciphering prognosis and immunotherapy response in prostate cancer. Identification and analysis of epithelial-mesenchymal transition-related key long non-coding RNAs in hypospadias Revealing the potential role of hub metabolism-related genes and their correlation with immune cells in acute ischemic stroke Gene signatures of endoplasmic reticulum stress and mitophagy for prognostic risk prediction in lung adenocarcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1