利用能量最小化和深度学习方法进行蛋白质结构预测。

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Natural Computing Pub Date : 2023-05-08 DOI:10.1007/s11047-023-09943-4
Juan Luis Filgueiras, Daniel Varela, José Santos
{"title":"利用能量最小化和深度学习方法进行蛋白质结构预测。","authors":"Juan Luis Filgueiras,&nbsp;Daniel Varela,&nbsp;José Santos","doi":"10.1007/s11047-023-09943-4","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we discuss the advantages and problems of two alternatives for ab initio protein structure prediction. On one hand, recent approaches based on deep learning, which have significantly improved prediction results for a wide variety of proteins, are discussed. On the other hand, methods based on protein conformational energy minimization and with different search strategies are analyzed. In this latter case, our methods based on a memetic combination between differential evolution and the fragment replacement technique are included, incorporating also the possibility of niching in the evolutionary search. Different proteins have been used to analyze the pros and cons in both approaches, proposing possibilities of integration of both alternatives.</p>","PeriodicalId":49783,"journal":{"name":"Natural Computing","volume":" ","pages":"1-12"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165305/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein structure prediction with energy minimization and deep learning approaches.\",\"authors\":\"Juan Luis Filgueiras,&nbsp;Daniel Varela,&nbsp;José Santos\",\"doi\":\"10.1007/s11047-023-09943-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we discuss the advantages and problems of two alternatives for ab initio protein structure prediction. On one hand, recent approaches based on deep learning, which have significantly improved prediction results for a wide variety of proteins, are discussed. On the other hand, methods based on protein conformational energy minimization and with different search strategies are analyzed. In this latter case, our methods based on a memetic combination between differential evolution and the fragment replacement technique are included, incorporating also the possibility of niching in the evolutionary search. Different proteins have been used to analyze the pros and cons in both approaches, proposing possibilities of integration of both alternatives.</p>\",\"PeriodicalId\":49783,\"journal\":{\"name\":\"Natural Computing\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165305/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11047-023-09943-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11047-023-09943-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了两种从头计算蛋白质结构预测方法的优点和问题。一方面,讨论了最近基于深度学习的方法,这些方法显著改善了对各种蛋白质的预测结果。另一方面,分析了基于蛋白质构象能量最小化和不同搜索策略的方法。在后一种情况下,我们基于差异进化和片段替换技术之间的模因组合的方法也被包括在内,在进化搜索中也加入了小生境的可能性。已经使用不同的蛋白质来分析这两种方法的优缺点,提出了整合这两种替代方案的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protein structure prediction with energy minimization and deep learning approaches.

In this paper we discuss the advantages and problems of two alternatives for ab initio protein structure prediction. On one hand, recent approaches based on deep learning, which have significantly improved prediction results for a wide variety of proteins, are discussed. On the other hand, methods based on protein conformational energy minimization and with different search strategies are analyzed. In this latter case, our methods based on a memetic combination between differential evolution and the fragment replacement technique are included, incorporating also the possibility of niching in the evolutionary search. Different proteins have been used to analyze the pros and cons in both approaches, proposing possibilities of integration of both alternatives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Computing
Natural Computing Computer Science-Computer Science Applications
CiteScore
4.40
自引率
4.80%
发文量
49
审稿时长
3 months
期刊介绍: The journal is soliciting papers on all aspects of natural computing. Because of the interdisciplinary character of the journal a special effort will be made to solicit survey, review, and tutorial papers which would make research trends in a given subarea more accessible to the broad audience of the journal.
期刊最新文献
Turning machines: a simple algorithmic model for molecular robotics. Correction: Cellular automata simulations of the sintering behavior of ceramics driven by surface energy reduction Evolving ensembles of heuristics for the travelling salesman problem Neighbourhood search for energy minimisation in flexible job shops under fuzziness Parallel pairwise operations on data stored in DNA: sorting, XOR, shifting, and searching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1