面向未来医疗保健的非接触式WiFi传感和监测-新兴趋势、挑战和机遇

IF 17.2 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL IEEE Reviews in Biomedical Engineering Pub Date : 2022-03-07 DOI:10.1109/RBME.2022.3156810
Yao Ge;Ahmad Taha;Syed Aziz Shah;Kia Dashtipour;Shuyuan Zhu;Jonathan Cooper;Qammer H. Abbasi;Muhammad Ali Imran
{"title":"面向未来医疗保健的非接触式WiFi传感和监测-新兴趋势、挑战和机遇","authors":"Yao Ge;Ahmad Taha;Syed Aziz Shah;Kia Dashtipour;Shuyuan Zhu;Jonathan Cooper;Qammer H. Abbasi;Muhammad Ali Imran","doi":"10.1109/RBME.2022.3156810","DOIUrl":null,"url":null,"abstract":"WiFi sensing has received recent and significant interest from academia, industry, healthcare professionals, and other caregivers (including family members) as a potential mechanism to monitor our aging population at a distance without deploying devices on users’ bodies. In particular, these methods have the potential to detect critical events such as falls, sleep disturbances, wandering behavior, respiratory disorders, and abnormal cardiac activity experienced by vulnerable people. The interest in such WiFi-based sensing systems arises from practical advantages including its ease of operation indoors as well as ready compliance from monitored individuals. Unlike other sensing methods, such as wearables, camera-based imaging, and acoustic-based solutions, WiFi technology is easy to implement and unobtrusive. This paper reviews the current state-of-the-art research on collecting and analyzing channel state information extracted using ubiquitous WiFi signals, describing a range of healthcare applications and identifying a series of open research challenges, including untapped areas of research and related trends. This work aims to provide an overarching view in understanding the technology and discusses its use-cases from a perspective that considers hardware, advanced signal processing, and data acquisition.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":17.2000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/4664312/10007429/09729463.pdf","citationCount":"17","resultStr":"{\"title\":\"Contactless WiFi Sensing and Monitoring for Future Healthcare - Emerging Trends, Challenges, and Opportunities\",\"authors\":\"Yao Ge;Ahmad Taha;Syed Aziz Shah;Kia Dashtipour;Shuyuan Zhu;Jonathan Cooper;Qammer H. Abbasi;Muhammad Ali Imran\",\"doi\":\"10.1109/RBME.2022.3156810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WiFi sensing has received recent and significant interest from academia, industry, healthcare professionals, and other caregivers (including family members) as a potential mechanism to monitor our aging population at a distance without deploying devices on users’ bodies. In particular, these methods have the potential to detect critical events such as falls, sleep disturbances, wandering behavior, respiratory disorders, and abnormal cardiac activity experienced by vulnerable people. The interest in such WiFi-based sensing systems arises from practical advantages including its ease of operation indoors as well as ready compliance from monitored individuals. Unlike other sensing methods, such as wearables, camera-based imaging, and acoustic-based solutions, WiFi technology is easy to implement and unobtrusive. This paper reviews the current state-of-the-art research on collecting and analyzing channel state information extracted using ubiquitous WiFi signals, describing a range of healthcare applications and identifying a series of open research challenges, including untapped areas of research and related trends. This work aims to provide an overarching view in understanding the technology and discusses its use-cases from a perspective that considers hardware, advanced signal processing, and data acquisition.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/4664312/10007429/09729463.pdf\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9729463/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9729463/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 17

摘要

最近,学术界、工业界、医疗保健专业人员和其他护理人员(包括家庭成员)对WiFi传感产生了极大的兴趣,认为它是一种潜在的机制,可以在不在用户身上部署设备的情况下远程监测我们的老龄化人口。特别是,这些方法有可能检测弱势人群经历的跌倒、睡眠障碍、流浪行为、呼吸系统紊乱和异常心脏活动等关键事件。对这种基于WiFi的传感系统的兴趣源于其实际优势,包括其易于在室内操作以及受监测的个人随时遵守。与其他传感方法不同,如可穿戴设备、基于摄像头的成像和基于声学的解决方案,WiFi技术易于实现且不引人注目。本文回顾了目前最先进的收集和分析使用无处不在的WiFi信号提取的信道状态信息的研究,描述了一系列医疗保健应用,并确定了一系列开放的研究挑战,包括尚未开发的研究领域和相关趋势。这项工作旨在提供理解该技术的总体观点,并从考虑硬件、高级信号处理和数据采集的角度讨论其用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contactless WiFi Sensing and Monitoring for Future Healthcare - Emerging Trends, Challenges, and Opportunities
WiFi sensing has received recent and significant interest from academia, industry, healthcare professionals, and other caregivers (including family members) as a potential mechanism to monitor our aging population at a distance without deploying devices on users’ bodies. In particular, these methods have the potential to detect critical events such as falls, sleep disturbances, wandering behavior, respiratory disorders, and abnormal cardiac activity experienced by vulnerable people. The interest in such WiFi-based sensing systems arises from practical advantages including its ease of operation indoors as well as ready compliance from monitored individuals. Unlike other sensing methods, such as wearables, camera-based imaging, and acoustic-based solutions, WiFi technology is easy to implement and unobtrusive. This paper reviews the current state-of-the-art research on collecting and analyzing channel state information extracted using ubiquitous WiFi signals, describing a range of healthcare applications and identifying a series of open research challenges, including untapped areas of research and related trends. This work aims to provide an overarching view in understanding the technology and discusses its use-cases from a perspective that considers hardware, advanced signal processing, and data acquisition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Reviews in Biomedical Engineering
IEEE Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
31.70
自引率
0.60%
发文量
93
期刊介绍: IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.
期刊最新文献
A Manual for Genome and Transcriptome Engineering. Artificial General Intelligence for Medical Imaging Analysis. A Survey of Few-Shot Learning for Biomedical Time Series. The Physiome Project and Digital Twins. Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1