国家相关概率下的传染病和社交距离。

IF 4.4 3区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Annals of Operations Research Pub Date : 2023-06-05 DOI:10.1007/s10479-023-05409-z
Davide La Torre, Simone Marsiglio, Fabio Privileggi
{"title":"国家相关概率下的传染病和社交距离。","authors":"Davide La Torre,&nbsp;Simone Marsiglio,&nbsp;Fabio Privileggi","doi":"10.1007/s10479-023-05409-z","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze the implications of infectious diseases and social distancing in an extended SIS framework to allow for the presence of stochastic shocks with state dependent probabilities. Random shocks give rise to the diffusion of a new strain of the disease which affects both the number of infectives and the average biological characteristics of the pathogen causing the disease. The probability of such shock realizations changes with the level of disease prevalence and we analyze how the properties of the state-dependent probability function affect the long run epidemiological outcome which is characterized by an invariant probability distribution supported on a range of positive prevalence levels. We show that social distancing reduces the size of the support of the steady state distribution decreasing thus the variability of disease prevalence, but in so doing it also shifts the support rightward allowing eventually for more infectives than in an uncontrolled framework. Nevertheless, social distancing is an effective control measure since it concentrates most of the mass of the distribution toward the lower extreme of its support.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"337 3","pages":"993 - 1008"},"PeriodicalIF":4.4000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infectious diseases and social distancing under state-dependent probabilities\",\"authors\":\"Davide La Torre,&nbsp;Simone Marsiglio,&nbsp;Fabio Privileggi\",\"doi\":\"10.1007/s10479-023-05409-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyze the implications of infectious diseases and social distancing in an extended SIS framework to allow for the presence of stochastic shocks with state dependent probabilities. Random shocks give rise to the diffusion of a new strain of the disease which affects both the number of infectives and the average biological characteristics of the pathogen causing the disease. The probability of such shock realizations changes with the level of disease prevalence and we analyze how the properties of the state-dependent probability function affect the long run epidemiological outcome which is characterized by an invariant probability distribution supported on a range of positive prevalence levels. We show that social distancing reduces the size of the support of the steady state distribution decreasing thus the variability of disease prevalence, but in so doing it also shifts the support rightward allowing eventually for more infectives than in an uncontrolled framework. Nevertheless, social distancing is an effective control measure since it concentrates most of the mass of the distribution toward the lower extreme of its support.</p></div>\",\"PeriodicalId\":8215,\"journal\":{\"name\":\"Annals of Operations Research\",\"volume\":\"337 3\",\"pages\":\"993 - 1008\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10479-023-05409-z\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-023-05409-z","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们在一个扩展的SIS框架中分析了传染病和社交距离的影响,以允许存在具有状态相关概率的随机冲击。随机冲击会导致一种新的疾病株的传播,这会影响感染者的数量和致病病原体的平均生物学特征。这种休克实现的概率随着疾病流行水平的变化而变化,我们分析了状态相关概率函数的性质如何影响长期流行病学结果,其特征是在一系列阳性流行水平上支持不变的概率分布。我们表明,保持社交距离会减少对稳态分布的支持,从而降低疾病流行率的可变性,但这样做也会将支持向右转移,最终导致比不受控制的框架中更多的传染性。尽管如此,保持社交距离是一种有效的控制措施,因为它将大部分分配集中在其支持的下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infectious diseases and social distancing under state-dependent probabilities

We analyze the implications of infectious diseases and social distancing in an extended SIS framework to allow for the presence of stochastic shocks with state dependent probabilities. Random shocks give rise to the diffusion of a new strain of the disease which affects both the number of infectives and the average biological characteristics of the pathogen causing the disease. The probability of such shock realizations changes with the level of disease prevalence and we analyze how the properties of the state-dependent probability function affect the long run epidemiological outcome which is characterized by an invariant probability distribution supported on a range of positive prevalence levels. We show that social distancing reduces the size of the support of the steady state distribution decreasing thus the variability of disease prevalence, but in so doing it also shifts the support rightward allowing eventually for more infectives than in an uncontrolled framework. Nevertheless, social distancing is an effective control measure since it concentrates most of the mass of the distribution toward the lower extreme of its support.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Operations Research
Annals of Operations Research 管理科学-运筹学与管理科学
CiteScore
7.90
自引率
16.70%
发文量
596
审稿时长
8.4 months
期刊介绍: The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications. In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.
期刊最新文献
Digital operations research models for intelligent machines (industry 4.0) and man-machine (industry 5.0) systems AI-based decision support systems for sustainable business management under circular economy Leveraging interpretable machine learning in intensive care Correction: Power utility maximization with expert opinions at fixed arrival times in a market with hidden gaussian drift Designing resilient supply chain networks: a systematic literature review of mitigation strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1