{"title":"一个动态网络模型的发展,以确定斑马鱼胚胎结构畸形的时间模式暴露于模型毒物,Tris(4-氯苯)甲醇。","authors":"Ashley V Schwartz, Karilyn E Sant, Uduak Z George","doi":"10.3390/jox13020021","DOIUrl":null,"url":null,"abstract":"<p><p>Embryogenesis is a well-coordinated process relying on precise cues and environmental signals that direct spatiotemporal embryonic patterning. Quite often, when one error in this process occurs, others tend to co-occur. We posit that investigating the co-occurrence of these abnormalities over time would yield additional information about the mode of toxicity for chemicals. Here, we use the environmental contaminant tris(4-chlorophenyl)methanol (TCPMOH) as a model toxicant to assess the relationship between exposures and co-occurrence of developmental abnormalities in zebrafish embryos. We propose a dynamic network modeling approach to study the co-occurrence of abnormalities, including pericardial edema, yolk sac edema, cranial malformation, spinal deformity, delayed/failed swim bladder inflation, and mortality induced by TCPMOH exposure. TCPMOH-exposed samples revealed increased abnormality co-occurrence when compared to controls. The abnormalities were represented as nodes in the dynamic network model. Abnormalities with high co-occurrence over time were identified using network centrality scores. We found that the temporal patterns of abnormality co-occurrence varied between exposure groups. In particular, the high TCPMOH exposure group experienced abnormality co-occurrence earlier than the low exposure group. The network model also revealed that pericardial and yolk sac edema are the most common critical nodes among all TCPMOH exposure levels, preceding further abnormalities. Overall, this study introduces a dynamic network model as a tool for assessing developmental toxicology, integrating structural and temporal features with a concentration response.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"13 2","pages":"284-297"},"PeriodicalIF":6.8000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301205/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a Dynamic Network Model to Identify Temporal Patterns of Structural Malformations in Zebrafish Embryos Exposed to a Model Toxicant, Tris(4-chlorophenyl)methanol.\",\"authors\":\"Ashley V Schwartz, Karilyn E Sant, Uduak Z George\",\"doi\":\"10.3390/jox13020021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Embryogenesis is a well-coordinated process relying on precise cues and environmental signals that direct spatiotemporal embryonic patterning. Quite often, when one error in this process occurs, others tend to co-occur. We posit that investigating the co-occurrence of these abnormalities over time would yield additional information about the mode of toxicity for chemicals. Here, we use the environmental contaminant tris(4-chlorophenyl)methanol (TCPMOH) as a model toxicant to assess the relationship between exposures and co-occurrence of developmental abnormalities in zebrafish embryos. We propose a dynamic network modeling approach to study the co-occurrence of abnormalities, including pericardial edema, yolk sac edema, cranial malformation, spinal deformity, delayed/failed swim bladder inflation, and mortality induced by TCPMOH exposure. TCPMOH-exposed samples revealed increased abnormality co-occurrence when compared to controls. The abnormalities were represented as nodes in the dynamic network model. Abnormalities with high co-occurrence over time were identified using network centrality scores. We found that the temporal patterns of abnormality co-occurrence varied between exposure groups. In particular, the high TCPMOH exposure group experienced abnormality co-occurrence earlier than the low exposure group. The network model also revealed that pericardial and yolk sac edema are the most common critical nodes among all TCPMOH exposure levels, preceding further abnormalities. Overall, this study introduces a dynamic network model as a tool for assessing developmental toxicology, integrating structural and temporal features with a concentration response.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"13 2\",\"pages\":\"284-297\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301205/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox13020021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox13020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Development of a Dynamic Network Model to Identify Temporal Patterns of Structural Malformations in Zebrafish Embryos Exposed to a Model Toxicant, Tris(4-chlorophenyl)methanol.
Embryogenesis is a well-coordinated process relying on precise cues and environmental signals that direct spatiotemporal embryonic patterning. Quite often, when one error in this process occurs, others tend to co-occur. We posit that investigating the co-occurrence of these abnormalities over time would yield additional information about the mode of toxicity for chemicals. Here, we use the environmental contaminant tris(4-chlorophenyl)methanol (TCPMOH) as a model toxicant to assess the relationship between exposures and co-occurrence of developmental abnormalities in zebrafish embryos. We propose a dynamic network modeling approach to study the co-occurrence of abnormalities, including pericardial edema, yolk sac edema, cranial malformation, spinal deformity, delayed/failed swim bladder inflation, and mortality induced by TCPMOH exposure. TCPMOH-exposed samples revealed increased abnormality co-occurrence when compared to controls. The abnormalities were represented as nodes in the dynamic network model. Abnormalities with high co-occurrence over time were identified using network centrality scores. We found that the temporal patterns of abnormality co-occurrence varied between exposure groups. In particular, the high TCPMOH exposure group experienced abnormality co-occurrence earlier than the low exposure group. The network model also revealed that pericardial and yolk sac edema are the most common critical nodes among all TCPMOH exposure levels, preceding further abnormalities. Overall, this study introduces a dynamic network model as a tool for assessing developmental toxicology, integrating structural and temporal features with a concentration response.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.