{"title":"广义线性模型下使用约束统计推断的频率检验统计量的评估。","authors":"Caroline Keck, Axel Mayer, Yves Rosseel","doi":"10.1080/21642850.2023.2222164","DOIUrl":null,"url":null,"abstract":"<p><p>When faced with a binary or count outcome, informative hypotheses can be tested in the generalized linear model using the distance statistic as well as modified versions of the Wald, the Score and the likelihood-ratio test (LRT). In contrast to classical null hypothesis testing, informative hypotheses allow to directly examine the direction or the order of the regression coefficients. Since knowledge about the practical performance of informative test statistics is missing in the theoretically oriented literature, we aim at closing this gap using simulation studies in the context of logistic and Poisson regression. We examine the effect of the number of constraints as well as the sample size on type I error rates when the hypothesis of interest can be expressed as a linear function of the regression parameters. The LRT shows the best performance in general, followed by the Score test. Furthermore, both the sample size and especially the number of constraints impact the type I error rates considerably more in logistic compared to Poisson regression. We provide an empirical data example together with R code that can be easily adapted by applied researchers. Moreover, we discuss informative hypothesis testing about effects of interest, which are a non-linear function of the regression parameters. We demonstrate this by means of a second empirical data example.</p>","PeriodicalId":12891,"journal":{"name":"Health Psychology and Behavioral Medicine","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/26/RHPB_11_2222164.PMC10288922.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation of frequentist test statistics using constrained statistical inference in the context of the generalized linear model.\",\"authors\":\"Caroline Keck, Axel Mayer, Yves Rosseel\",\"doi\":\"10.1080/21642850.2023.2222164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When faced with a binary or count outcome, informative hypotheses can be tested in the generalized linear model using the distance statistic as well as modified versions of the Wald, the Score and the likelihood-ratio test (LRT). In contrast to classical null hypothesis testing, informative hypotheses allow to directly examine the direction or the order of the regression coefficients. Since knowledge about the practical performance of informative test statistics is missing in the theoretically oriented literature, we aim at closing this gap using simulation studies in the context of logistic and Poisson regression. We examine the effect of the number of constraints as well as the sample size on type I error rates when the hypothesis of interest can be expressed as a linear function of the regression parameters. The LRT shows the best performance in general, followed by the Score test. Furthermore, both the sample size and especially the number of constraints impact the type I error rates considerably more in logistic compared to Poisson regression. We provide an empirical data example together with R code that can be easily adapted by applied researchers. Moreover, we discuss informative hypothesis testing about effects of interest, which are a non-linear function of the regression parameters. We demonstrate this by means of a second empirical data example.</p>\",\"PeriodicalId\":12891,\"journal\":{\"name\":\"Health Psychology and Behavioral Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/26/RHPB_11_2222164.PMC10288922.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Psychology and Behavioral Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642850.2023.2222164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, CLINICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Psychology and Behavioral Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642850.2023.2222164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
Evaluation of frequentist test statistics using constrained statistical inference in the context of the generalized linear model.
When faced with a binary or count outcome, informative hypotheses can be tested in the generalized linear model using the distance statistic as well as modified versions of the Wald, the Score and the likelihood-ratio test (LRT). In contrast to classical null hypothesis testing, informative hypotheses allow to directly examine the direction or the order of the regression coefficients. Since knowledge about the practical performance of informative test statistics is missing in the theoretically oriented literature, we aim at closing this gap using simulation studies in the context of logistic and Poisson regression. We examine the effect of the number of constraints as well as the sample size on type I error rates when the hypothesis of interest can be expressed as a linear function of the regression parameters. The LRT shows the best performance in general, followed by the Score test. Furthermore, both the sample size and especially the number of constraints impact the type I error rates considerably more in logistic compared to Poisson regression. We provide an empirical data example together with R code that can be easily adapted by applied researchers. Moreover, we discuss informative hypothesis testing about effects of interest, which are a non-linear function of the regression parameters. We demonstrate this by means of a second empirical data example.
期刊介绍:
Health Psychology and Behavioral Medicine: an Open Access Journal (HPBM) publishes theoretical and empirical contributions on all aspects of research and practice into psychosocial, behavioral and biomedical aspects of health. HPBM publishes international, interdisciplinary research with diverse methodological approaches on: Assessment and diagnosis Narratives, experiences and discourses of health and illness Treatment processes and recovery Health cognitions and behaviors at population and individual levels Psychosocial an behavioral prevention interventions Psychosocial determinants and consequences of behavior Social and cultural contexts of health and illness, health disparities Health, illness and medicine Application of advanced information and communication technology.