癌症乳腺诊断的工程方法综述

IF 17.2 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL IEEE Reviews in Biomedical Engineering Pub Date : 2022-06-10 DOI:10.1109/RBME.2022.3181700
Arif Mohd. Kamal;Tushar Sakorikar;Uttam M. Pal;Hardik J. Pandya
{"title":"癌症乳腺诊断的工程方法综述","authors":"Arif Mohd. Kamal;Tushar Sakorikar;Uttam M. Pal;Hardik J. Pandya","doi":"10.1109/RBME.2022.3181700","DOIUrl":null,"url":null,"abstract":"Breast cancer is a leading cause of mortality among women. The patient's survival rate is uncertain due to the limitations in the accuracy of diagnosis and effective monitoring during cancer treatment. The key to efficaciously controlling cancer on a larger scale is effective diagnosis at an early stage of cancer by distinguishing the vital signatures of the diseased from the normal breast tissue. The breast tissue is a heterogeneous turbid media that exhibits multifaceted bulk tissue properties. Various sensing modalities can yield distinct tissue behavior for cancer and adjacent normal tissues, serving as a basis for cancer diagnosis. A novel multimodal diagnostic tool that can concurrently assess the optical, electrical, and mechanical bulk tissue properties can substantially augment the clinical findings such as histopathology, potentially aiding the clinician to establish an accurate and rapid diagnosis of cancer. This review aims to discuss the clinical and engineering aspects along with the unmet challenges of these physical sensing modalities, primarily in the field of optical, electrical, and mechanical. The challenges of combining two or more of these sensing modalities that can significantly enhance the effectiveness of the clinical diagnostic tools are further investigated.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"687-705"},"PeriodicalIF":17.2000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Engineering Approaches for Breast Cancer Diagnosis: A Review\",\"authors\":\"Arif Mohd. Kamal;Tushar Sakorikar;Uttam M. Pal;Hardik J. Pandya\",\"doi\":\"10.1109/RBME.2022.3181700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer is a leading cause of mortality among women. The patient's survival rate is uncertain due to the limitations in the accuracy of diagnosis and effective monitoring during cancer treatment. The key to efficaciously controlling cancer on a larger scale is effective diagnosis at an early stage of cancer by distinguishing the vital signatures of the diseased from the normal breast tissue. The breast tissue is a heterogeneous turbid media that exhibits multifaceted bulk tissue properties. Various sensing modalities can yield distinct tissue behavior for cancer and adjacent normal tissues, serving as a basis for cancer diagnosis. A novel multimodal diagnostic tool that can concurrently assess the optical, electrical, and mechanical bulk tissue properties can substantially augment the clinical findings such as histopathology, potentially aiding the clinician to establish an accurate and rapid diagnosis of cancer. This review aims to discuss the clinical and engineering aspects along with the unmet challenges of these physical sensing modalities, primarily in the field of optical, electrical, and mechanical. The challenges of combining two or more of these sensing modalities that can significantly enhance the effectiveness of the clinical diagnostic tools are further investigated.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"16 \",\"pages\":\"687-705\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9794437/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9794437/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 4

摘要

癌症是妇女死亡的主要原因。由于癌症治疗期间诊断的准确性和有效监测的局限性,患者的存活率是不确定的。在更大范围内有效控制癌症的关键是通过区分病变和正常乳腺组织的生命特征,在癌症的早期进行有效诊断。乳房组织是一种异质性混浊介质,表现出多方面的大块组织特性。各种传感方式可以产生癌症和邻近正常组织的不同组织行为,作为癌症诊断的基础。一种能够同时评估光学、电学和机械大块组织特性的新型多模式诊断工具可以显著增强临床发现,如组织病理学,潜在地帮助临床医生建立癌症的准确和快速诊断。这篇综述旨在讨论临床和工程方面,以及这些物理传感模式尚未解决的挑战,主要是在光学、电学和机械领域。进一步研究了将两种或多种传感模式结合起来以显著提高临床诊断工具有效性的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering Approaches for Breast Cancer Diagnosis: A Review
Breast cancer is a leading cause of mortality among women. The patient's survival rate is uncertain due to the limitations in the accuracy of diagnosis and effective monitoring during cancer treatment. The key to efficaciously controlling cancer on a larger scale is effective diagnosis at an early stage of cancer by distinguishing the vital signatures of the diseased from the normal breast tissue. The breast tissue is a heterogeneous turbid media that exhibits multifaceted bulk tissue properties. Various sensing modalities can yield distinct tissue behavior for cancer and adjacent normal tissues, serving as a basis for cancer diagnosis. A novel multimodal diagnostic tool that can concurrently assess the optical, electrical, and mechanical bulk tissue properties can substantially augment the clinical findings such as histopathology, potentially aiding the clinician to establish an accurate and rapid diagnosis of cancer. This review aims to discuss the clinical and engineering aspects along with the unmet challenges of these physical sensing modalities, primarily in the field of optical, electrical, and mechanical. The challenges of combining two or more of these sensing modalities that can significantly enhance the effectiveness of the clinical diagnostic tools are further investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Reviews in Biomedical Engineering
IEEE Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
31.70
自引率
0.60%
发文量
93
期刊介绍: IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.
期刊最新文献
Foundation Model for Advancing Healthcare: Challenges, Opportunities and Future Directions. A Manual for Genome and Transcriptome Engineering. Artificial General Intelligence for Medical Imaging Analysis. A Survey of Few-Shot Learning for Biomedical Time Series. The Physiome Project and Digital Twins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1