{"title":"无监督心电图分析:综述","authors":"Kasra Nezamabadi;Neda Sardaripour;Benyamin Haghi;Mohamad Forouzanfar","doi":"10.1109/RBME.2022.3154893","DOIUrl":null,"url":null,"abstract":"Electrocardiography is the gold standard technique for detecting abnormal heart conditions. Automatic detection of electrocardiogram (ECG) abnormalities helps clinicians analyze the large amount of data produced daily by cardiac monitors. As thenumber of abnormal ECG samples with cardiologist-supplied labels required to train supervised machine learning models is limited, there is a growing need for unsupervised learning methods for ECG analysis. Unsupervised learning aims to partition ECG samples into distinct abnormality classes without cardiologist-supplied labels–a process referred to as ECG clustering. In addition to abnormality detection, ECG clustering has recently discovered inter and intra-individual patterns that reveal valuable information about the whole body and mind, such as emotions, mental disorders, and metabolic levels. ECG clustering can also resolve specific challenges facing supervised learning systems, such as the imbalanced data problem, and can enhance biometric systems. While several reviews exist on supervised ECG systems, a comprehensive review of unsupervised ECG analysis techniques is still lacking. This study reviews ECG clustering techniques developed mainly in the last decade. The focus will be on recent machine learning and deep learning algorithms and their practical applications. We critically review and compare these techniques, discuss their applications and limitations, and provide future research directions. This review provides further insights into ECG clustering and presents the necessary information required to adopt the appropriate algorithm for a specific application.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"208-224"},"PeriodicalIF":17.2000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Unsupervised ECG Analysis: A Review\",\"authors\":\"Kasra Nezamabadi;Neda Sardaripour;Benyamin Haghi;Mohamad Forouzanfar\",\"doi\":\"10.1109/RBME.2022.3154893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocardiography is the gold standard technique for detecting abnormal heart conditions. Automatic detection of electrocardiogram (ECG) abnormalities helps clinicians analyze the large amount of data produced daily by cardiac monitors. As thenumber of abnormal ECG samples with cardiologist-supplied labels required to train supervised machine learning models is limited, there is a growing need for unsupervised learning methods for ECG analysis. Unsupervised learning aims to partition ECG samples into distinct abnormality classes without cardiologist-supplied labels–a process referred to as ECG clustering. In addition to abnormality detection, ECG clustering has recently discovered inter and intra-individual patterns that reveal valuable information about the whole body and mind, such as emotions, mental disorders, and metabolic levels. ECG clustering can also resolve specific challenges facing supervised learning systems, such as the imbalanced data problem, and can enhance biometric systems. While several reviews exist on supervised ECG systems, a comprehensive review of unsupervised ECG analysis techniques is still lacking. This study reviews ECG clustering techniques developed mainly in the last decade. The focus will be on recent machine learning and deep learning algorithms and their practical applications. We critically review and compare these techniques, discuss their applications and limitations, and provide future research directions. This review provides further insights into ECG clustering and presents the necessary information required to adopt the appropriate algorithm for a specific application.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"16 \",\"pages\":\"208-224\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9723003/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9723003/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Electrocardiography is the gold standard technique for detecting abnormal heart conditions. Automatic detection of electrocardiogram (ECG) abnormalities helps clinicians analyze the large amount of data produced daily by cardiac monitors. As thenumber of abnormal ECG samples with cardiologist-supplied labels required to train supervised machine learning models is limited, there is a growing need for unsupervised learning methods for ECG analysis. Unsupervised learning aims to partition ECG samples into distinct abnormality classes without cardiologist-supplied labels–a process referred to as ECG clustering. In addition to abnormality detection, ECG clustering has recently discovered inter and intra-individual patterns that reveal valuable information about the whole body and mind, such as emotions, mental disorders, and metabolic levels. ECG clustering can also resolve specific challenges facing supervised learning systems, such as the imbalanced data problem, and can enhance biometric systems. While several reviews exist on supervised ECG systems, a comprehensive review of unsupervised ECG analysis techniques is still lacking. This study reviews ECG clustering techniques developed mainly in the last decade. The focus will be on recent machine learning and deep learning algorithms and their practical applications. We critically review and compare these techniques, discuss their applications and limitations, and provide future research directions. This review provides further insights into ECG clustering and presents the necessary information required to adopt the appropriate algorithm for a specific application.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.