{"title":"利用图像变换心电图波形预测心脏监护病房患者的短期死亡率","authors":"Terumasa Kondo;Atsushi Teramoto;Eiichi Watanabe;Yoshihiro Sobue;Hideo Izawa;Kuniaki Saito;Hiroshi Fujita","doi":"10.1109/JTEHM.2023.3250352","DOIUrl":null,"url":null,"abstract":"Objective: The early detection of cardiac disease is important because the disease can lead to sudden death and poor prognosis. Electrocardiograms (ECG) are used to screen for cardiac diseases and are useful for the early detection and determination of treatment strategies. However, the ECG waveforms of cardiac care unit (CCU) patients with severe cardiac disease are often complicated by comorbidities and patient conditions, making it difficult to predict the severity of further cardiac disease. Therefore, this study predicts the short-term prognosis of CCU patients to detect further deterioration in CCU patients at an early stage. Methods: The ECG data (II, V3, V5, aVR induction) of CCU patients were converted to image data. The transformed ECG images were used to predict short-term prognosis with a two-dimensional convolutional neural network (CNN). Results: The prediction accuracy was 77.3%. Visualization by GradCAM showed that the CNN tended to focus on the shape and regularity of waveforms, such as heart failure and myocardial infarction. Conclusion: These results suggest that the proposed method may be useful for short-term prognosis prediction using the ECG waveforms of CCU patients. Clinical impact: The proposed method could be used to determine the treatment strategy and choose the intensity of treatment after admission to the CCU.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"191-198"},"PeriodicalIF":3.7000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10056148","citationCount":"0","resultStr":"{\"title\":\"Prediction of Short-Term Mortality of Cardiac Care Unit Patients Using Image-Transformed ECG Waveforms\",\"authors\":\"Terumasa Kondo;Atsushi Teramoto;Eiichi Watanabe;Yoshihiro Sobue;Hideo Izawa;Kuniaki Saito;Hiroshi Fujita\",\"doi\":\"10.1109/JTEHM.2023.3250352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: The early detection of cardiac disease is important because the disease can lead to sudden death and poor prognosis. Electrocardiograms (ECG) are used to screen for cardiac diseases and are useful for the early detection and determination of treatment strategies. However, the ECG waveforms of cardiac care unit (CCU) patients with severe cardiac disease are often complicated by comorbidities and patient conditions, making it difficult to predict the severity of further cardiac disease. Therefore, this study predicts the short-term prognosis of CCU patients to detect further deterioration in CCU patients at an early stage. Methods: The ECG data (II, V3, V5, aVR induction) of CCU patients were converted to image data. The transformed ECG images were used to predict short-term prognosis with a two-dimensional convolutional neural network (CNN). Results: The prediction accuracy was 77.3%. Visualization by GradCAM showed that the CNN tended to focus on the shape and regularity of waveforms, such as heart failure and myocardial infarction. Conclusion: These results suggest that the proposed method may be useful for short-term prognosis prediction using the ECG waveforms of CCU patients. Clinical impact: The proposed method could be used to determine the treatment strategy and choose the intensity of treatment after admission to the CCU.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"11 \",\"pages\":\"191-198\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10056148\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10056148/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10056148/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Prediction of Short-Term Mortality of Cardiac Care Unit Patients Using Image-Transformed ECG Waveforms
Objective: The early detection of cardiac disease is important because the disease can lead to sudden death and poor prognosis. Electrocardiograms (ECG) are used to screen for cardiac diseases and are useful for the early detection and determination of treatment strategies. However, the ECG waveforms of cardiac care unit (CCU) patients with severe cardiac disease are often complicated by comorbidities and patient conditions, making it difficult to predict the severity of further cardiac disease. Therefore, this study predicts the short-term prognosis of CCU patients to detect further deterioration in CCU patients at an early stage. Methods: The ECG data (II, V3, V5, aVR induction) of CCU patients were converted to image data. The transformed ECG images were used to predict short-term prognosis with a two-dimensional convolutional neural network (CNN). Results: The prediction accuracy was 77.3%. Visualization by GradCAM showed that the CNN tended to focus on the shape and regularity of waveforms, such as heart failure and myocardial infarction. Conclusion: These results suggest that the proposed method may be useful for short-term prognosis prediction using the ECG waveforms of CCU patients. Clinical impact: The proposed method could be used to determine the treatment strategy and choose the intensity of treatment after admission to the CCU.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.