一种用于斜视测量的新型数字化屏幕测试

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Zeitschrift fur Medizinische Physik Pub Date : 2023-05-01 DOI:10.1016/j.zemedi.2022.07.001
Theo Oltrup, Marvin Bende, Celine Henseling, Thomas Bende, Martin A Leitritz, Karl Ulrich Bartz-Schmidt
{"title":"一种用于斜视测量的新型数字化屏幕测试","authors":"Theo Oltrup,&nbsp;Marvin Bende,&nbsp;Celine Henseling,&nbsp;Thomas Bende,&nbsp;Martin A Leitritz,&nbsp;Karl Ulrich Bartz-Schmidt","doi":"10.1016/j.zemedi.2022.07.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Our study presents a digitised tangent screen test for ocular motility analysis according to the Harms and Hess tests (measurement of the squint angle in all fields of vision). This test uses an image beamer to display the tangent screen, a position sensor to measure the patient’s head orientation, and a distance sensor to measure the fixation distance. Digital measurement of head orientation allows for a test procedure that eliminates the conventional requirement for a light pointer in the patient’s hand. Thus, the digital screen test is presented, and the uncertainty of the measurement system is evaluated.</p></div><div><h3>Methods</h3><p>A mathematical relationship was given between the measured squint angles, as well as the angle of diagnostic gaze direction, and the influence quantities on their measurement uncertainty. The individual uncertainties resulted from deviations in the measured values by the position and distance sensors, the calibration of the projection image of the beamer in length units, and the finite image resolution of the beamer. The individual standard uncertainties of the influence quantities were determined. The combined standard measurement uncertainties of the squint and gaze direction angles were given based on the model equation of the error propagation law at the tangent table according to Harms at a test distance of 2.5 m. The patient’s uncertainty contribution to the mobility analysis was not considered.</p></div><div><h3>Results</h3><p>The combined standard uncertainty of the measurement system (coverage factor k = 2 for 95% confidence level) for the squint angle is ≤ 0.43° for the angle of diagnostic gaze direction ≤ 3.13° at the test distance of 2.5 m. The individual standard uncertainties of the influence quantities on the angles are (k = 1): 1.55°/1.01° (horizontal/vertical angle of the position sensor), 0.19° (distance sensor), 0.06° (calibration of the projection image of the beamer), and 0.02° (image resolution of the beamer). The maximum valid test distance of the digital screen test is 3.8 m.</p></div><div><h3>Conclusion</h3><p>The digital screen test is compact and can be used at different locations. Compared to the traditional test, the time required for examination via the digitised test is less; additionally, its documentation is simplified. The measurement uncertainty of the diagnostic gaze direction angle is dominated by the sensor drift of the position sensor in the horizontal direction (yaw angle) and is due to the sensor technology. However, this drift error does not affect the squint angle measurement result nor its measurement uncertainty because the measurement principle used here is based on the congruence between the position cross and the fixation object and the confusion principle and compensates for the drift error. The measurement uncertainties of the determined measurement system are the lower limits of the uncertainties in the clinical use of the digital screen test if there are no effects due to significant patient deviations.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/6c/main.PMC10311250.pdf","citationCount":"0","resultStr":"{\"title\":\"A new digitised screen test for strabismus measurement\",\"authors\":\"Theo Oltrup,&nbsp;Marvin Bende,&nbsp;Celine Henseling,&nbsp;Thomas Bende,&nbsp;Martin A Leitritz,&nbsp;Karl Ulrich Bartz-Schmidt\",\"doi\":\"10.1016/j.zemedi.2022.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Our study presents a digitised tangent screen test for ocular motility analysis according to the Harms and Hess tests (measurement of the squint angle in all fields of vision). This test uses an image beamer to display the tangent screen, a position sensor to measure the patient’s head orientation, and a distance sensor to measure the fixation distance. Digital measurement of head orientation allows for a test procedure that eliminates the conventional requirement for a light pointer in the patient’s hand. Thus, the digital screen test is presented, and the uncertainty of the measurement system is evaluated.</p></div><div><h3>Methods</h3><p>A mathematical relationship was given between the measured squint angles, as well as the angle of diagnostic gaze direction, and the influence quantities on their measurement uncertainty. The individual uncertainties resulted from deviations in the measured values by the position and distance sensors, the calibration of the projection image of the beamer in length units, and the finite image resolution of the beamer. The individual standard uncertainties of the influence quantities were determined. The combined standard measurement uncertainties of the squint and gaze direction angles were given based on the model equation of the error propagation law at the tangent table according to Harms at a test distance of 2.5 m. The patient’s uncertainty contribution to the mobility analysis was not considered.</p></div><div><h3>Results</h3><p>The combined standard uncertainty of the measurement system (coverage factor k = 2 for 95% confidence level) for the squint angle is ≤ 0.43° for the angle of diagnostic gaze direction ≤ 3.13° at the test distance of 2.5 m. The individual standard uncertainties of the influence quantities on the angles are (k = 1): 1.55°/1.01° (horizontal/vertical angle of the position sensor), 0.19° (distance sensor), 0.06° (calibration of the projection image of the beamer), and 0.02° (image resolution of the beamer). The maximum valid test distance of the digital screen test is 3.8 m.</p></div><div><h3>Conclusion</h3><p>The digital screen test is compact and can be used at different locations. Compared to the traditional test, the time required for examination via the digitised test is less; additionally, its documentation is simplified. The measurement uncertainty of the diagnostic gaze direction angle is dominated by the sensor drift of the position sensor in the horizontal direction (yaw angle) and is due to the sensor technology. However, this drift error does not affect the squint angle measurement result nor its measurement uncertainty because the measurement principle used here is based on the congruence between the position cross and the fixation object and the confusion principle and compensates for the drift error. The measurement uncertainties of the determined measurement system are the lower limits of the uncertainties in the clinical use of the digital screen test if there are no effects due to significant patient deviations.</p></div>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/6c/main.PMC10311250.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388922000691\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388922000691","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的我们的研究根据Harms和Hess测试(测量所有视野中的斜视角),提出了一种用于眼运动分析的数字化切屏测试。该测试使用图像波束仪显示切线屏幕,使用位置传感器测量患者的头部方向,使用距离传感器测量固定距离。头部方位的数字测量允许一种测试程序,该程序消除了对患者手中指针的传统要求。因此,提出了数字屏幕测试,并对测量系统的不确定度进行了评估。方法给出测量斜视角度、诊断凝视方向角度及其对测量不确定度的影响量之间的数学关系。单个不确定性是由位置和距离传感器测量值的偏差、以长度为单位的波束仪投影图像的校准以及波束仪的有限图像分辨率引起的。确定了影响量的单个标准不确定度。在测试距离为2.5的情况下,根据Harms在正切表上的误差传播定律模型方程,给出了斜视和凝视方向角的组合标准测量不确定度 m.未考虑患者对移动性分析的不确定性贡献。结果测量系统的组合标准不确定度(覆盖因子k = 2表示95%置信水平)在2.5的测试距离下,斜视角度≤0.43°,诊断凝视方向角度≤3.13° m.角度影响量的单个标准不确定度为(k = 1) :1.55°/1.01°(位置传感器的水平/垂直角度)、0.19°(距离传感器)、0.06°(波束仪投影图像的校准)和0.02°(波束机的图像分辨率)。数字屏幕测试的最大有效测试距离为3.8 m。结论数字屏幕测试结构紧凑,可在不同位置使用。与传统考试相比,通过数字化考试进行考试所需的时间更少;此外,它的文档也得到了简化。诊断凝视方向角的测量不确定性主要由位置传感器在水平方向上的传感器漂移(偏航角)决定,并且是由于传感器技术造成的。然而,这种漂移误差既不影响斜视角测量结果,也不影响其测量不确定度,因为这里使用的测量原理是基于位置十字和固定物体之间的一致性和混淆原理,并补偿漂移误差。所确定的测量系统的测量不确定度是数字屏幕测试临床使用中不确定度的下限,如果由于患者的重大偏差而没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new digitised screen test for strabismus measurement

Purpose

Our study presents a digitised tangent screen test for ocular motility analysis according to the Harms and Hess tests (measurement of the squint angle in all fields of vision). This test uses an image beamer to display the tangent screen, a position sensor to measure the patient’s head orientation, and a distance sensor to measure the fixation distance. Digital measurement of head orientation allows for a test procedure that eliminates the conventional requirement for a light pointer in the patient’s hand. Thus, the digital screen test is presented, and the uncertainty of the measurement system is evaluated.

Methods

A mathematical relationship was given between the measured squint angles, as well as the angle of diagnostic gaze direction, and the influence quantities on their measurement uncertainty. The individual uncertainties resulted from deviations in the measured values by the position and distance sensors, the calibration of the projection image of the beamer in length units, and the finite image resolution of the beamer. The individual standard uncertainties of the influence quantities were determined. The combined standard measurement uncertainties of the squint and gaze direction angles were given based on the model equation of the error propagation law at the tangent table according to Harms at a test distance of 2.5 m. The patient’s uncertainty contribution to the mobility analysis was not considered.

Results

The combined standard uncertainty of the measurement system (coverage factor k = 2 for 95% confidence level) for the squint angle is ≤ 0.43° for the angle of diagnostic gaze direction ≤ 3.13° at the test distance of 2.5 m. The individual standard uncertainties of the influence quantities on the angles are (k = 1): 1.55°/1.01° (horizontal/vertical angle of the position sensor), 0.19° (distance sensor), 0.06° (calibration of the projection image of the beamer), and 0.02° (image resolution of the beamer). The maximum valid test distance of the digital screen test is 3.8 m.

Conclusion

The digital screen test is compact and can be used at different locations. Compared to the traditional test, the time required for examination via the digitised test is less; additionally, its documentation is simplified. The measurement uncertainty of the diagnostic gaze direction angle is dominated by the sensor drift of the position sensor in the horizontal direction (yaw angle) and is due to the sensor technology. However, this drift error does not affect the squint angle measurement result nor its measurement uncertainty because the measurement principle used here is based on the congruence between the position cross and the fixation object and the confusion principle and compensates for the drift error. The measurement uncertainties of the determined measurement system are the lower limits of the uncertainties in the clinical use of the digital screen test if there are no effects due to significant patient deviations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
期刊最新文献
Editorial Board Contents Development and clinical implementation of a digital system for risk assessments for radiation therapy End-to-end testing for stereotactic radiotherapy including the development of a Multi-Modality phantom Note on uncertainty in Monte Carlo dose calculations and its relation to microdosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1