双侧视网膜基因治疗引起的人类视觉系统的动态结构重塑

Manzar Ashtari , Philip Cook , Mikhail Lipin , Yinxi Yu , Gui-Shuang Ying , Albert Maguire , Jean Bennett , James Gee , Hui Zhang
{"title":"双侧视网膜基因治疗引起的人类视觉系统的动态结构重塑","authors":"Manzar Ashtari ,&nbsp;Philip Cook ,&nbsp;Mikhail Lipin ,&nbsp;Yinxi Yu ,&nbsp;Gui-Shuang Ying ,&nbsp;Albert Maguire ,&nbsp;Jean Bennett ,&nbsp;James Gee ,&nbsp;Hui Zhang","doi":"10.1016/j.crneur.2023.100089","DOIUrl":null,"url":null,"abstract":"<div><p>The impact of changes in visual input on neuronal circuitry is complex and much of our knowledge on human brain plasticity of the visual systems comes from animal studies. Reinstating vision in a group of patients with low vision through retinal gene therapy creates a unique opportunity to dynamically study the underlying process responsible for brain plasticity. Historically, increases in the axonal myelination of the visual pathway has been the biomarker for brain plasticity. Here, we demonstrate that to reach the long-term effects of myelination increase, the human brain may undergo demyelination as part of a plasticity process. The maximum change in dendritic arborization of the primary visual cortex and the neurite density along the geniculostriate tracks occurred at three months (3MO) post intervention, in line with timing for the peak changes in postnatal synaptogenesis within the visual cortex reported in animal studies. The maximum change at 3MO for both the gray and white matter significantly correlated with patients’ clinical responses to light stimulations called full field sensitivity threshold (FST). Our results shed a new light on the underlying process of brain plasticity by challenging the concept of increase myelination being the hallmark of brain plasticity and instead reinforcing the idea of signal speed optimization as a dynamic process for brain plasticity.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"4 ","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/27/b3/main.PMC10313860.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamic structural remodeling of the human visual system prompted by bilateral retinal gene therapy\",\"authors\":\"Manzar Ashtari ,&nbsp;Philip Cook ,&nbsp;Mikhail Lipin ,&nbsp;Yinxi Yu ,&nbsp;Gui-Shuang Ying ,&nbsp;Albert Maguire ,&nbsp;Jean Bennett ,&nbsp;James Gee ,&nbsp;Hui Zhang\",\"doi\":\"10.1016/j.crneur.2023.100089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The impact of changes in visual input on neuronal circuitry is complex and much of our knowledge on human brain plasticity of the visual systems comes from animal studies. Reinstating vision in a group of patients with low vision through retinal gene therapy creates a unique opportunity to dynamically study the underlying process responsible for brain plasticity. Historically, increases in the axonal myelination of the visual pathway has been the biomarker for brain plasticity. Here, we demonstrate that to reach the long-term effects of myelination increase, the human brain may undergo demyelination as part of a plasticity process. The maximum change in dendritic arborization of the primary visual cortex and the neurite density along the geniculostriate tracks occurred at three months (3MO) post intervention, in line with timing for the peak changes in postnatal synaptogenesis within the visual cortex reported in animal studies. The maximum change at 3MO for both the gray and white matter significantly correlated with patients’ clinical responses to light stimulations called full field sensitivity threshold (FST). Our results shed a new light on the underlying process of brain plasticity by challenging the concept of increase myelination being the hallmark of brain plasticity and instead reinforcing the idea of signal speed optimization as a dynamic process for brain plasticity.</p></div>\",\"PeriodicalId\":72752,\"journal\":{\"name\":\"Current research in neurobiology\",\"volume\":\"4 \",\"pages\":\"Article 100089\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/27/b3/main.PMC10313860.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current research in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665945X23000177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665945X23000177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉输入的变化对神经回路的影响是复杂的,我们对人类大脑视觉系统可塑性的了解大多来自动物研究。通过视网膜基因治疗恢复一组低视力患者的视力,为动态研究大脑可塑性的潜在过程创造了一个独特的机会。历史上,视觉通路轴突髓鞘形成的增加一直是大脑可塑性的生物标志物。在这里,我们证明,为了达到髓鞘形成增加的长期影响,人类大脑可能经历脱髓鞘作为可塑性过程的一部分。干预后3个月,初级视觉皮层树突树突和沿genullostriate轨迹的神经突密度发生最大变化,与动物研究中报道的出生后视觉皮层突触发生峰值变化的时间一致。3MO时灰质和白质的最大变化与患者对光刺激的临床反应显著相关,称为全场敏感阈值(full field sensitivity threshold, FST)。我们的研究结果通过挑战髓鞘形成增加是大脑可塑性标志的概念,而不是强化信号速度优化是大脑可塑性动态过程的想法,为大脑可塑性的潜在过程提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic structural remodeling of the human visual system prompted by bilateral retinal gene therapy

The impact of changes in visual input on neuronal circuitry is complex and much of our knowledge on human brain plasticity of the visual systems comes from animal studies. Reinstating vision in a group of patients with low vision through retinal gene therapy creates a unique opportunity to dynamically study the underlying process responsible for brain plasticity. Historically, increases in the axonal myelination of the visual pathway has been the biomarker for brain plasticity. Here, we demonstrate that to reach the long-term effects of myelination increase, the human brain may undergo demyelination as part of a plasticity process. The maximum change in dendritic arborization of the primary visual cortex and the neurite density along the geniculostriate tracks occurred at three months (3MO) post intervention, in line with timing for the peak changes in postnatal synaptogenesis within the visual cortex reported in animal studies. The maximum change at 3MO for both the gray and white matter significantly correlated with patients’ clinical responses to light stimulations called full field sensitivity threshold (FST). Our results shed a new light on the underlying process of brain plasticity by challenging the concept of increase myelination being the hallmark of brain plasticity and instead reinforcing the idea of signal speed optimization as a dynamic process for brain plasticity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Intranasal insulin attenuates hypoxia-ischemia-induced short-term sensorimotor behavioral disturbances, neuronal apoptosis, and brain damage in neonatal rats Protective effects of Embelin in Benzo[α]pyrene induced cognitive and memory impairment in experimental model of mice Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex Hearing loss in juvenile rats leads to excessive play fighting and hyperactivity, mild cognitive deficits and altered neuronal activity in the prefrontal cortex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1