{"title":"近岸-开放海域样带多胺转化细菌浮游生物的宏基因组。","authors":"Xinxin Lu, Kai Wang, Xiaozhen Mou","doi":"10.1007/s42995-021-00114-x","DOIUrl":null,"url":null,"abstract":"<p><p>Short-chained aliphatic polyamines (PAs) have recently been recognized as an important carbon, nitrogen, and/or energy source for marine bacterioplankton. To study the genes and taxa involved in the transformations of different PA compounds and their potential variations among marine systems, we collected surface bacterioplankton from nearshore, offshore, and open ocean stations in the Gulf of Mexico and examined their metagenomic responses to additions of single PA model compounds (putrescine, spermidine, or spermine). Genes affiliated with PA uptake and all three known PA degradation pathways, i.e., transamination, γ-glutamylation, and spermidine cleavage, were significantly enriched in most PA-treated metagenomes. In addition, identified PA-transforming taxa were mostly the alpha and gamma classes of Proteobacteria<i>,</i> with less important contributions from members of Betaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and <i>Planctomycetes.</i> These findings suggest that PA transformations are ubiquitous, have diverse pathways, and are carried out by a broad range of the bacterioplankton taxa in the Gulf of Mexico. Identified PA-transforming bacterial genes and taxa were different among nearshore, offshore, and open ocean sites, but were little different among individual compound-amended metagenomes at any specific site. These observations further indicate that PA-transforming taxa and genes are site-specific and with high similarities among PA compounds.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-021-00114-x.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"4 2","pages":"268-276"},"PeriodicalIF":5.8000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42995-021-00114-x","citationCount":"1","resultStr":"{\"title\":\"Metagenomes of polyamine-transforming bacterioplankton along a nearshore-open ocean transect.\",\"authors\":\"Xinxin Lu, Kai Wang, Xiaozhen Mou\",\"doi\":\"10.1007/s42995-021-00114-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Short-chained aliphatic polyamines (PAs) have recently been recognized as an important carbon, nitrogen, and/or energy source for marine bacterioplankton. To study the genes and taxa involved in the transformations of different PA compounds and their potential variations among marine systems, we collected surface bacterioplankton from nearshore, offshore, and open ocean stations in the Gulf of Mexico and examined their metagenomic responses to additions of single PA model compounds (putrescine, spermidine, or spermine). Genes affiliated with PA uptake and all three known PA degradation pathways, i.e., transamination, γ-glutamylation, and spermidine cleavage, were significantly enriched in most PA-treated metagenomes. In addition, identified PA-transforming taxa were mostly the alpha and gamma classes of Proteobacteria<i>,</i> with less important contributions from members of Betaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and <i>Planctomycetes.</i> These findings suggest that PA transformations are ubiquitous, have diverse pathways, and are carried out by a broad range of the bacterioplankton taxa in the Gulf of Mexico. Identified PA-transforming bacterial genes and taxa were different among nearshore, offshore, and open ocean sites, but were little different among individual compound-amended metagenomes at any specific site. These observations further indicate that PA-transforming taxa and genes are site-specific and with high similarities among PA compounds.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-021-00114-x.</p>\",\"PeriodicalId\":53218,\"journal\":{\"name\":\"Marine Life Science & Technology\",\"volume\":\"4 2\",\"pages\":\"268-276\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s42995-021-00114-x\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Life Science & Technology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42995-021-00114-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-021-00114-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Metagenomes of polyamine-transforming bacterioplankton along a nearshore-open ocean transect.
Short-chained aliphatic polyamines (PAs) have recently been recognized as an important carbon, nitrogen, and/or energy source for marine bacterioplankton. To study the genes and taxa involved in the transformations of different PA compounds and their potential variations among marine systems, we collected surface bacterioplankton from nearshore, offshore, and open ocean stations in the Gulf of Mexico and examined their metagenomic responses to additions of single PA model compounds (putrescine, spermidine, or spermine). Genes affiliated with PA uptake and all three known PA degradation pathways, i.e., transamination, γ-glutamylation, and spermidine cleavage, were significantly enriched in most PA-treated metagenomes. In addition, identified PA-transforming taxa were mostly the alpha and gamma classes of Proteobacteria, with less important contributions from members of Betaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and Planctomycetes. These findings suggest that PA transformations are ubiquitous, have diverse pathways, and are carried out by a broad range of the bacterioplankton taxa in the Gulf of Mexico. Identified PA-transforming bacterial genes and taxa were different among nearshore, offshore, and open ocean sites, but were little different among individual compound-amended metagenomes at any specific site. These observations further indicate that PA-transforming taxa and genes are site-specific and with high similarities among PA compounds.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-021-00114-x.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.